Rational Equiangular Polygons
The main purpose of this note is to investigate equiangular polygons with rational edges. When the number of edges is the power of a prime, we determine simple, necessary and sufficient conditions for the existence of such polygons. As special cases of our investigations, we settle two conjectures i...
Gespeichert in:
Veröffentlicht in: | Applied mathematics (Irvine, Calif.) Calif.), 2013-10, Vol.4 (10), p.1460-1465 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1465 |
---|---|
container_issue | 10 |
container_start_page | 1460 |
container_title | Applied mathematics (Irvine, Calif.) |
container_volume | 4 |
creator | Munteanu, Marius Munteanu, Laura |
description | The main purpose of this note is to investigate equiangular polygons with rational edges. When the number of edges is the power of a prime, we determine simple, necessary and sufficient conditions for the existence of such polygons. As special cases of our investigations, we settle two conjectures involving arithmetic polygons. |
doi_str_mv | 10.4236/am.2013.410197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671480948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671480948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1127-ab8bbcc1c763ee9a0e3b6a67c13cf0fc1aa3a19ad5324659d666a3799671aeaf3</originalsourceid><addsrcrecordid>eNo9kMFLwzAYxYMoOOau3oQdvbTm65cmzVHGdMJAET2Hr1k6KmmzJeth_70dFd_lvcOPd_gxdg88FwXKJ-ryggPmAjhodcVmBZRFplDj9f-uylu2SOmHjyk510rM2MMnndrQk1-uj0NL_X7wFJcfwZ_3oU937KYhn9zir-fs-2X9tdpk2_fXt9XzNrMAhcqoruraWrBKonOauMNaklQW0Da8sUCEBJp2JRZClnonpSRUWksF5KjBOXucfg8xHAeXTqZrk3XeU-_CkAyMoKi4FtWI5hNqY0gpusYcYttRPBvg5qLCUGcuKsykAn8BrbVQCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671480948</pqid></control><display><type>article</type><title>Rational Equiangular Polygons</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Munteanu, Marius ; Munteanu, Laura</creator><creatorcontrib>Munteanu, Marius ; Munteanu, Laura</creatorcontrib><description>The main purpose of this note is to investigate equiangular polygons with rational edges. When the number of edges is the power of a prime, we determine simple, necessary and sufficient conditions for the existence of such polygons. As special cases of our investigations, we settle two conjectures involving arithmetic polygons.</description><identifier>ISSN: 2152-7385</identifier><identifier>EISSN: 2152-7393</identifier><identifier>DOI: 10.4236/am.2013.410197</identifier><language>eng</language><subject>Arithmetic ; Mathematical analysis ; Polygons</subject><ispartof>Applied mathematics (Irvine, Calif.), 2013-10, Vol.4 (10), p.1460-1465</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1127-ab8bbcc1c763ee9a0e3b6a67c13cf0fc1aa3a19ad5324659d666a3799671aeaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Munteanu, Marius</creatorcontrib><creatorcontrib>Munteanu, Laura</creatorcontrib><title>Rational Equiangular Polygons</title><title>Applied mathematics (Irvine, Calif.)</title><description>The main purpose of this note is to investigate equiangular polygons with rational edges. When the number of edges is the power of a prime, we determine simple, necessary and sufficient conditions for the existence of such polygons. As special cases of our investigations, we settle two conjectures involving arithmetic polygons.</description><subject>Arithmetic</subject><subject>Mathematical analysis</subject><subject>Polygons</subject><issn>2152-7385</issn><issn>2152-7393</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kMFLwzAYxYMoOOau3oQdvbTm65cmzVHGdMJAET2Hr1k6KmmzJeth_70dFd_lvcOPd_gxdg88FwXKJ-ryggPmAjhodcVmBZRFplDj9f-uylu2SOmHjyk510rM2MMnndrQk1-uj0NL_X7wFJcfwZ_3oU937KYhn9zir-fs-2X9tdpk2_fXt9XzNrMAhcqoruraWrBKonOauMNaklQW0Da8sUCEBJp2JRZClnonpSRUWksF5KjBOXucfg8xHAeXTqZrk3XeU-_CkAyMoKi4FtWI5hNqY0gpusYcYttRPBvg5qLCUGcuKsykAn8BrbVQCA</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Munteanu, Marius</creator><creator>Munteanu, Laura</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131001</creationdate><title>Rational Equiangular Polygons</title><author>Munteanu, Marius ; Munteanu, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1127-ab8bbcc1c763ee9a0e3b6a67c13cf0fc1aa3a19ad5324659d666a3799671aeaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arithmetic</topic><topic>Mathematical analysis</topic><topic>Polygons</topic><toplevel>online_resources</toplevel><creatorcontrib>Munteanu, Marius</creatorcontrib><creatorcontrib>Munteanu, Laura</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics (Irvine, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Munteanu, Marius</au><au>Munteanu, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational Equiangular Polygons</atitle><jtitle>Applied mathematics (Irvine, Calif.)</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>4</volume><issue>10</issue><spage>1460</spage><epage>1465</epage><pages>1460-1465</pages><issn>2152-7385</issn><eissn>2152-7393</eissn><abstract>The main purpose of this note is to investigate equiangular polygons with rational edges. When the number of edges is the power of a prime, we determine simple, necessary and sufficient conditions for the existence of such polygons. As special cases of our investigations, we settle two conjectures involving arithmetic polygons.</abstract><doi>10.4236/am.2013.410197</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2152-7385 |
ispartof | Applied mathematics (Irvine, Calif.), 2013-10, Vol.4 (10), p.1460-1465 |
issn | 2152-7385 2152-7393 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671480948 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Arithmetic Mathematical analysis Polygons |
title | Rational Equiangular Polygons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20Equiangular%20Polygons&rft.jtitle=Applied%20mathematics%20(Irvine,%20Calif.)&rft.au=Munteanu,%20Marius&rft.date=2013-10-01&rft.volume=4&rft.issue=10&rft.spage=1460&rft.epage=1465&rft.pages=1460-1465&rft.issn=2152-7385&rft.eissn=2152-7393&rft_id=info:doi/10.4236/am.2013.410197&rft_dat=%3Cproquest_cross%3E1671480948%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671480948&rft_id=info:pmid/&rfr_iscdi=true |