Quantum simulation study of single halo dual-material gate CNTFETs

For the first time, a novel single halo dual-material gate carbon nanotube Field-Effect Transistors (CNTFETs) with doped source and drain extensions is proposed and simulated using quantum simulation. The simulations are based on two-dimensional non-equilibrium Green’s functions (NEGF) solved self-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid-state electronics 2014-01, Vol.91, p.147-151
Hauptverfasser: Wang, Wei, Li, Na, Xia, Chunping, Xiao, Guangran, Ren, Yuzhou, Li, Hao, Zheng, Lifen, Li, Jin, Jiang, Junjie, Chen, Xiaoping, Wang, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue
container_start_page 147
container_title Solid-state electronics
container_volume 91
creator Wang, Wei
Li, Na
Xia, Chunping
Xiao, Guangran
Ren, Yuzhou
Li, Hao
Zheng, Lifen
Li, Jin
Jiang, Junjie
Chen, Xiaoping
Wang, Kai
description For the first time, a novel single halo dual-material gate carbon nanotube Field-Effect Transistors (CNTFETs) with doped source and drain extensions is proposed and simulated using quantum simulation. The simulations are based on two-dimensional non-equilibrium Green’s functions (NEGF) solved self-consistently with Poisson’s equations. Comparisons are made for electrical characteristics among four CNTFETs structures, which are conventional single-material-gate CNTFETs (C-CNTFETs), halo single-material-gate CNTFETs (HALO-CNTFETs), dual-material-gate CNTFETs (DMG-CNTFETs), and halo dual-material-gate CNTFETs (HALO-DMG-CNTFETs). The results show that the HALO-DMG structure decreases significantly the leakage current and increases on–off current ratio as well as cutoff frequency. It is also demonstrated that HALO-DMG structure possesses two perceivable steps in potential profile of the channel, which leads to another lateral electric field peak inside the channel, thus improve both carrier efficiency and the immunity against short-channel effects (SCE). Finally, the high-frequency characteristics of the CNTFETs have been discussed based on the channel vertical electric field distributions. The parasitic capacitance has a great influence on the cutoff frequency, and limits the RF performance of the device.
doi_str_mv 10.1016/j.sse.2013.10.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671480397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038110113003195</els_id><sourcerecordid>1671480397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-e61d2922146f3c8f2b559a6404e60cbed793f6b761795ee34a4e497c38b745f83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG-9CF5aJx9NWzzp4hcsirCeQ5pO1yxpuyatsP_eLCsePU3m5ZkZ8hBySSGjQOXNJgsBMwaUxz4DKo7IjJZFlTIB-TGZAfAypRE9JWchbACASQozcv8-6X6cuiTYbnJ6tEOfhHFqdsnQxqxfO0w-tRuSZtIu7fSI3mqXrOMjWbyuHh9W4ZyctNoFvPitc_IR48Vzunx7elncLVPDJYwpStqwijEqZMtN2bI6zystBQiUYGpsioq3si4kLaockQstUFSF4WVdiLwt-ZxcH_Zu_fA1YRhVZ4NB53SPwxQUlQUVJfCqiCg9oMYPIXhs1dbbTvudoqD2vtRGRV9q72sfRV9x5up3vQ5Gu9br3tjwN8hKENEhi9ztgcP412-LXgVjsTfYWI9mVM1g_7nyAyIAfnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671480397</pqid></control><display><type>article</type><title>Quantum simulation study of single halo dual-material gate CNTFETs</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Wei ; Li, Na ; Xia, Chunping ; Xiao, Guangran ; Ren, Yuzhou ; Li, Hao ; Zheng, Lifen ; Li, Jin ; Jiang, Junjie ; Chen, Xiaoping ; Wang, Kai</creator><creatorcontrib>Wang, Wei ; Li, Na ; Xia, Chunping ; Xiao, Guangran ; Ren, Yuzhou ; Li, Hao ; Zheng, Lifen ; Li, Jin ; Jiang, Junjie ; Chen, Xiaoping ; Wang, Kai</creatorcontrib><description>For the first time, a novel single halo dual-material gate carbon nanotube Field-Effect Transistors (CNTFETs) with doped source and drain extensions is proposed and simulated using quantum simulation. The simulations are based on two-dimensional non-equilibrium Green’s functions (NEGF) solved self-consistently with Poisson’s equations. Comparisons are made for electrical characteristics among four CNTFETs structures, which are conventional single-material-gate CNTFETs (C-CNTFETs), halo single-material-gate CNTFETs (HALO-CNTFETs), dual-material-gate CNTFETs (DMG-CNTFETs), and halo dual-material-gate CNTFETs (HALO-DMG-CNTFETs). The results show that the HALO-DMG structure decreases significantly the leakage current and increases on–off current ratio as well as cutoff frequency. It is also demonstrated that HALO-DMG structure possesses two perceivable steps in potential profile of the channel, which leads to another lateral electric field peak inside the channel, thus improve both carrier efficiency and the immunity against short-channel effects (SCE). Finally, the high-frequency characteristics of the CNTFETs have been discussed based on the channel vertical electric field distributions. The parasitic capacitance has a great influence on the cutoff frequency, and limits the RF performance of the device.</description><identifier>ISSN: 0038-1101</identifier><identifier>EISSN: 1879-2405</identifier><identifier>DOI: 10.1016/j.sse.2013.10.014</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Capacitance ; Channels ; CNTFETs ; Cross-disciplinary physics: materials science; rheology ; Devices ; Dual-material-gate ; Electric fields ; Electronics ; Exact sciences and technology ; Gates ; Halo doping ; Halos ; Materials science ; Molecular electronics, nanoelectronics ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Non-equilibrium Green’s functions (NEGF) ; Physics ; Poisson equation ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Short-channel effects (SCE) ; Simulation ; Transistors</subject><ispartof>Solid-state electronics, 2014-01, Vol.91, p.147-151</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-e61d2922146f3c8f2b559a6404e60cbed793f6b761795ee34a4e497c38b745f83</citedby><cites>FETCH-LOGICAL-c360t-e61d2922146f3c8f2b559a6404e60cbed793f6b761795ee34a4e497c38b745f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sse.2013.10.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28040382$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Xia, Chunping</creatorcontrib><creatorcontrib>Xiao, Guangran</creatorcontrib><creatorcontrib>Ren, Yuzhou</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Zheng, Lifen</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Jiang, Junjie</creatorcontrib><creatorcontrib>Chen, Xiaoping</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><title>Quantum simulation study of single halo dual-material gate CNTFETs</title><title>Solid-state electronics</title><description>For the first time, a novel single halo dual-material gate carbon nanotube Field-Effect Transistors (CNTFETs) with doped source and drain extensions is proposed and simulated using quantum simulation. The simulations are based on two-dimensional non-equilibrium Green’s functions (NEGF) solved self-consistently with Poisson’s equations. Comparisons are made for electrical characteristics among four CNTFETs structures, which are conventional single-material-gate CNTFETs (C-CNTFETs), halo single-material-gate CNTFETs (HALO-CNTFETs), dual-material-gate CNTFETs (DMG-CNTFETs), and halo dual-material-gate CNTFETs (HALO-DMG-CNTFETs). The results show that the HALO-DMG structure decreases significantly the leakage current and increases on–off current ratio as well as cutoff frequency. It is also demonstrated that HALO-DMG structure possesses two perceivable steps in potential profile of the channel, which leads to another lateral electric field peak inside the channel, thus improve both carrier efficiency and the immunity against short-channel effects (SCE). Finally, the high-frequency characteristics of the CNTFETs have been discussed based on the channel vertical electric field distributions. The parasitic capacitance has a great influence on the cutoff frequency, and limits the RF performance of the device.</description><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Channels</subject><subject>CNTFETs</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Devices</subject><subject>Dual-material-gate</subject><subject>Electric fields</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gates</subject><subject>Halo doping</subject><subject>Halos</subject><subject>Materials science</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Non-equilibrium Green’s functions (NEGF)</subject><subject>Physics</subject><subject>Poisson equation</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Short-channel effects (SCE)</subject><subject>Simulation</subject><subject>Transistors</subject><issn>0038-1101</issn><issn>1879-2405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG-9CF5aJx9NWzzp4hcsirCeQ5pO1yxpuyatsP_eLCsePU3m5ZkZ8hBySSGjQOXNJgsBMwaUxz4DKo7IjJZFlTIB-TGZAfAypRE9JWchbACASQozcv8-6X6cuiTYbnJ6tEOfhHFqdsnQxqxfO0w-tRuSZtIu7fSI3mqXrOMjWbyuHh9W4ZyctNoFvPitc_IR48Vzunx7elncLVPDJYwpStqwijEqZMtN2bI6zystBQiUYGpsioq3si4kLaockQstUFSF4WVdiLwt-ZxcH_Zu_fA1YRhVZ4NB53SPwxQUlQUVJfCqiCg9oMYPIXhs1dbbTvudoqD2vtRGRV9q72sfRV9x5up3vQ5Gu9br3tjwN8hKENEhi9ztgcP412-LXgVjsTfYWI9mVM1g_7nyAyIAfnI</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Wang, Wei</creator><creator>Li, Na</creator><creator>Xia, Chunping</creator><creator>Xiao, Guangran</creator><creator>Ren, Yuzhou</creator><creator>Li, Hao</creator><creator>Zheng, Lifen</creator><creator>Li, Jin</creator><creator>Jiang, Junjie</creator><creator>Chen, Xiaoping</creator><creator>Wang, Kai</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>Quantum simulation study of single halo dual-material gate CNTFETs</title><author>Wang, Wei ; Li, Na ; Xia, Chunping ; Xiao, Guangran ; Ren, Yuzhou ; Li, Hao ; Zheng, Lifen ; Li, Jin ; Jiang, Junjie ; Chen, Xiaoping ; Wang, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-e61d2922146f3c8f2b559a6404e60cbed793f6b761795ee34a4e497c38b745f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Channels</topic><topic>CNTFETs</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Devices</topic><topic>Dual-material-gate</topic><topic>Electric fields</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gates</topic><topic>Halo doping</topic><topic>Halos</topic><topic>Materials science</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Non-equilibrium Green’s functions (NEGF)</topic><topic>Physics</topic><topic>Poisson equation</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Short-channel effects (SCE)</topic><topic>Simulation</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Xia, Chunping</creatorcontrib><creatorcontrib>Xiao, Guangran</creatorcontrib><creatorcontrib>Ren, Yuzhou</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Zheng, Lifen</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Jiang, Junjie</creatorcontrib><creatorcontrib>Chen, Xiaoping</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid-state electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wei</au><au>Li, Na</au><au>Xia, Chunping</au><au>Xiao, Guangran</au><au>Ren, Yuzhou</au><au>Li, Hao</au><au>Zheng, Lifen</au><au>Li, Jin</au><au>Jiang, Junjie</au><au>Chen, Xiaoping</au><au>Wang, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum simulation study of single halo dual-material gate CNTFETs</atitle><jtitle>Solid-state electronics</jtitle><date>2014-01</date><risdate>2014</risdate><volume>91</volume><spage>147</spage><epage>151</epage><pages>147-151</pages><issn>0038-1101</issn><eissn>1879-2405</eissn><abstract>For the first time, a novel single halo dual-material gate carbon nanotube Field-Effect Transistors (CNTFETs) with doped source and drain extensions is proposed and simulated using quantum simulation. The simulations are based on two-dimensional non-equilibrium Green’s functions (NEGF) solved self-consistently with Poisson’s equations. Comparisons are made for electrical characteristics among four CNTFETs structures, which are conventional single-material-gate CNTFETs (C-CNTFETs), halo single-material-gate CNTFETs (HALO-CNTFETs), dual-material-gate CNTFETs (DMG-CNTFETs), and halo dual-material-gate CNTFETs (HALO-DMG-CNTFETs). The results show that the HALO-DMG structure decreases significantly the leakage current and increases on–off current ratio as well as cutoff frequency. It is also demonstrated that HALO-DMG structure possesses two perceivable steps in potential profile of the channel, which leads to another lateral electric field peak inside the channel, thus improve both carrier efficiency and the immunity against short-channel effects (SCE). Finally, the high-frequency characteristics of the CNTFETs have been discussed based on the channel vertical electric field distributions. The parasitic capacitance has a great influence on the cutoff frequency, and limits the RF performance of the device.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.sse.2013.10.014</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-1101
ispartof Solid-state electronics, 2014-01, Vol.91, p.147-151
issn 0038-1101
1879-2405
language eng
recordid cdi_proquest_miscellaneous_1671480397
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Capacitance
Channels
CNTFETs
Cross-disciplinary physics: materials science
rheology
Devices
Dual-material-gate
Electric fields
Electronics
Exact sciences and technology
Gates
Halo doping
Halos
Materials science
Molecular electronics, nanoelectronics
Nanoscale materials and structures: fabrication and characterization
Nanotubes
Non-equilibrium Green’s functions (NEGF)
Physics
Poisson equation
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Short-channel effects (SCE)
Simulation
Transistors
title Quantum simulation study of single halo dual-material gate CNTFETs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20simulation%20study%20of%20single%20halo%20dual-material%20gate%20CNTFETs&rft.jtitle=Solid-state%20electronics&rft.au=Wang,%20Wei&rft.date=2014-01&rft.volume=91&rft.spage=147&rft.epage=151&rft.pages=147-151&rft.issn=0038-1101&rft.eissn=1879-2405&rft_id=info:doi/10.1016/j.sse.2013.10.014&rft_dat=%3Cproquest_cross%3E1671480397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671480397&rft_id=info:pmid/&rft_els_id=S0038110113003195&rfr_iscdi=true