Quantum simulation study of single halo dual-material gate CNTFETs
For the first time, a novel single halo dual-material gate carbon nanotube Field-Effect Transistors (CNTFETs) with doped source and drain extensions is proposed and simulated using quantum simulation. The simulations are based on two-dimensional non-equilibrium Green’s functions (NEGF) solved self-c...
Gespeichert in:
Veröffentlicht in: | Solid-state electronics 2014-01, Vol.91, p.147-151 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 151 |
---|---|
container_issue | |
container_start_page | 147 |
container_title | Solid-state electronics |
container_volume | 91 |
creator | Wang, Wei Li, Na Xia, Chunping Xiao, Guangran Ren, Yuzhou Li, Hao Zheng, Lifen Li, Jin Jiang, Junjie Chen, Xiaoping Wang, Kai |
description | For the first time, a novel single halo dual-material gate carbon nanotube Field-Effect Transistors (CNTFETs) with doped source and drain extensions is proposed and simulated using quantum simulation. The simulations are based on two-dimensional non-equilibrium Green’s functions (NEGF) solved self-consistently with Poisson’s equations. Comparisons are made for electrical characteristics among four CNTFETs structures, which are conventional single-material-gate CNTFETs (C-CNTFETs), halo single-material-gate CNTFETs (HALO-CNTFETs), dual-material-gate CNTFETs (DMG-CNTFETs), and halo dual-material-gate CNTFETs (HALO-DMG-CNTFETs). The results show that the HALO-DMG structure decreases significantly the leakage current and increases on–off current ratio as well as cutoff frequency. It is also demonstrated that HALO-DMG structure possesses two perceivable steps in potential profile of the channel, which leads to another lateral electric field peak inside the channel, thus improve both carrier efficiency and the immunity against short-channel effects (SCE). Finally, the high-frequency characteristics of the CNTFETs have been discussed based on the channel vertical electric field distributions. The parasitic capacitance has a great influence on the cutoff frequency, and limits the RF performance of the device. |
doi_str_mv | 10.1016/j.sse.2013.10.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671480397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038110113003195</els_id><sourcerecordid>1671480397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-e61d2922146f3c8f2b559a6404e60cbed793f6b761795ee34a4e497c38b745f83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG-9CF5aJx9NWzzp4hcsirCeQ5pO1yxpuyatsP_eLCsePU3m5ZkZ8hBySSGjQOXNJgsBMwaUxz4DKo7IjJZFlTIB-TGZAfAypRE9JWchbACASQozcv8-6X6cuiTYbnJ6tEOfhHFqdsnQxqxfO0w-tRuSZtIu7fSI3mqXrOMjWbyuHh9W4ZyctNoFvPitc_IR48Vzunx7elncLVPDJYwpStqwijEqZMtN2bI6zystBQiUYGpsioq3si4kLaockQstUFSF4WVdiLwt-ZxcH_Zu_fA1YRhVZ4NB53SPwxQUlQUVJfCqiCg9oMYPIXhs1dbbTvudoqD2vtRGRV9q72sfRV9x5up3vQ5Gu9br3tjwN8hKENEhi9ztgcP412-LXgVjsTfYWI9mVM1g_7nyAyIAfnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671480397</pqid></control><display><type>article</type><title>Quantum simulation study of single halo dual-material gate CNTFETs</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, Wei ; Li, Na ; Xia, Chunping ; Xiao, Guangran ; Ren, Yuzhou ; Li, Hao ; Zheng, Lifen ; Li, Jin ; Jiang, Junjie ; Chen, Xiaoping ; Wang, Kai</creator><creatorcontrib>Wang, Wei ; Li, Na ; Xia, Chunping ; Xiao, Guangran ; Ren, Yuzhou ; Li, Hao ; Zheng, Lifen ; Li, Jin ; Jiang, Junjie ; Chen, Xiaoping ; Wang, Kai</creatorcontrib><description>For the first time, a novel single halo dual-material gate carbon nanotube Field-Effect Transistors (CNTFETs) with doped source and drain extensions is proposed and simulated using quantum simulation. The simulations are based on two-dimensional non-equilibrium Green’s functions (NEGF) solved self-consistently with Poisson’s equations. Comparisons are made for electrical characteristics among four CNTFETs structures, which are conventional single-material-gate CNTFETs (C-CNTFETs), halo single-material-gate CNTFETs (HALO-CNTFETs), dual-material-gate CNTFETs (DMG-CNTFETs), and halo dual-material-gate CNTFETs (HALO-DMG-CNTFETs). The results show that the HALO-DMG structure decreases significantly the leakage current and increases on–off current ratio as well as cutoff frequency. It is also demonstrated that HALO-DMG structure possesses two perceivable steps in potential profile of the channel, which leads to another lateral electric field peak inside the channel, thus improve both carrier efficiency and the immunity against short-channel effects (SCE). Finally, the high-frequency characteristics of the CNTFETs have been discussed based on the channel vertical electric field distributions. The parasitic capacitance has a great influence on the cutoff frequency, and limits the RF performance of the device.</description><identifier>ISSN: 0038-1101</identifier><identifier>EISSN: 1879-2405</identifier><identifier>DOI: 10.1016/j.sse.2013.10.014</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Capacitance ; Channels ; CNTFETs ; Cross-disciplinary physics: materials science; rheology ; Devices ; Dual-material-gate ; Electric fields ; Electronics ; Exact sciences and technology ; Gates ; Halo doping ; Halos ; Materials science ; Molecular electronics, nanoelectronics ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Non-equilibrium Green’s functions (NEGF) ; Physics ; Poisson equation ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Short-channel effects (SCE) ; Simulation ; Transistors</subject><ispartof>Solid-state electronics, 2014-01, Vol.91, p.147-151</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-e61d2922146f3c8f2b559a6404e60cbed793f6b761795ee34a4e497c38b745f83</citedby><cites>FETCH-LOGICAL-c360t-e61d2922146f3c8f2b559a6404e60cbed793f6b761795ee34a4e497c38b745f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sse.2013.10.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28040382$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Xia, Chunping</creatorcontrib><creatorcontrib>Xiao, Guangran</creatorcontrib><creatorcontrib>Ren, Yuzhou</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Zheng, Lifen</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Jiang, Junjie</creatorcontrib><creatorcontrib>Chen, Xiaoping</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><title>Quantum simulation study of single halo dual-material gate CNTFETs</title><title>Solid-state electronics</title><description>For the first time, a novel single halo dual-material gate carbon nanotube Field-Effect Transistors (CNTFETs) with doped source and drain extensions is proposed and simulated using quantum simulation. The simulations are based on two-dimensional non-equilibrium Green’s functions (NEGF) solved self-consistently with Poisson’s equations. Comparisons are made for electrical characteristics among four CNTFETs structures, which are conventional single-material-gate CNTFETs (C-CNTFETs), halo single-material-gate CNTFETs (HALO-CNTFETs), dual-material-gate CNTFETs (DMG-CNTFETs), and halo dual-material-gate CNTFETs (HALO-DMG-CNTFETs). The results show that the HALO-DMG structure decreases significantly the leakage current and increases on–off current ratio as well as cutoff frequency. It is also demonstrated that HALO-DMG structure possesses two perceivable steps in potential profile of the channel, which leads to another lateral electric field peak inside the channel, thus improve both carrier efficiency and the immunity against short-channel effects (SCE). Finally, the high-frequency characteristics of the CNTFETs have been discussed based on the channel vertical electric field distributions. The parasitic capacitance has a great influence on the cutoff frequency, and limits the RF performance of the device.</description><subject>Applied sciences</subject><subject>Capacitance</subject><subject>Channels</subject><subject>CNTFETs</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Devices</subject><subject>Dual-material-gate</subject><subject>Electric fields</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gates</subject><subject>Halo doping</subject><subject>Halos</subject><subject>Materials science</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Non-equilibrium Green’s functions (NEGF)</subject><subject>Physics</subject><subject>Poisson equation</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Short-channel effects (SCE)</subject><subject>Simulation</subject><subject>Transistors</subject><issn>0038-1101</issn><issn>1879-2405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG-9CF5aJx9NWzzp4hcsirCeQ5pO1yxpuyatsP_eLCsePU3m5ZkZ8hBySSGjQOXNJgsBMwaUxz4DKo7IjJZFlTIB-TGZAfAypRE9JWchbACASQozcv8-6X6cuiTYbnJ6tEOfhHFqdsnQxqxfO0w-tRuSZtIu7fSI3mqXrOMjWbyuHh9W4ZyctNoFvPitc_IR48Vzunx7elncLVPDJYwpStqwijEqZMtN2bI6zystBQiUYGpsioq3si4kLaockQstUFSF4WVdiLwt-ZxcH_Zu_fA1YRhVZ4NB53SPwxQUlQUVJfCqiCg9oMYPIXhs1dbbTvudoqD2vtRGRV9q72sfRV9x5up3vQ5Gu9br3tjwN8hKENEhi9ztgcP412-LXgVjsTfYWI9mVM1g_7nyAyIAfnI</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Wang, Wei</creator><creator>Li, Na</creator><creator>Xia, Chunping</creator><creator>Xiao, Guangran</creator><creator>Ren, Yuzhou</creator><creator>Li, Hao</creator><creator>Zheng, Lifen</creator><creator>Li, Jin</creator><creator>Jiang, Junjie</creator><creator>Chen, Xiaoping</creator><creator>Wang, Kai</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>Quantum simulation study of single halo dual-material gate CNTFETs</title><author>Wang, Wei ; Li, Na ; Xia, Chunping ; Xiao, Guangran ; Ren, Yuzhou ; Li, Hao ; Zheng, Lifen ; Li, Jin ; Jiang, Junjie ; Chen, Xiaoping ; Wang, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-e61d2922146f3c8f2b559a6404e60cbed793f6b761795ee34a4e497c38b745f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Capacitance</topic><topic>Channels</topic><topic>CNTFETs</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Devices</topic><topic>Dual-material-gate</topic><topic>Electric fields</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gates</topic><topic>Halo doping</topic><topic>Halos</topic><topic>Materials science</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Non-equilibrium Green’s functions (NEGF)</topic><topic>Physics</topic><topic>Poisson equation</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Short-channel effects (SCE)</topic><topic>Simulation</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Xia, Chunping</creatorcontrib><creatorcontrib>Xiao, Guangran</creatorcontrib><creatorcontrib>Ren, Yuzhou</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Zheng, Lifen</creatorcontrib><creatorcontrib>Li, Jin</creatorcontrib><creatorcontrib>Jiang, Junjie</creatorcontrib><creatorcontrib>Chen, Xiaoping</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid-state electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wei</au><au>Li, Na</au><au>Xia, Chunping</au><au>Xiao, Guangran</au><au>Ren, Yuzhou</au><au>Li, Hao</au><au>Zheng, Lifen</au><au>Li, Jin</au><au>Jiang, Junjie</au><au>Chen, Xiaoping</au><au>Wang, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum simulation study of single halo dual-material gate CNTFETs</atitle><jtitle>Solid-state electronics</jtitle><date>2014-01</date><risdate>2014</risdate><volume>91</volume><spage>147</spage><epage>151</epage><pages>147-151</pages><issn>0038-1101</issn><eissn>1879-2405</eissn><abstract>For the first time, a novel single halo dual-material gate carbon nanotube Field-Effect Transistors (CNTFETs) with doped source and drain extensions is proposed and simulated using quantum simulation. The simulations are based on two-dimensional non-equilibrium Green’s functions (NEGF) solved self-consistently with Poisson’s equations. Comparisons are made for electrical characteristics among four CNTFETs structures, which are conventional single-material-gate CNTFETs (C-CNTFETs), halo single-material-gate CNTFETs (HALO-CNTFETs), dual-material-gate CNTFETs (DMG-CNTFETs), and halo dual-material-gate CNTFETs (HALO-DMG-CNTFETs). The results show that the HALO-DMG structure decreases significantly the leakage current and increases on–off current ratio as well as cutoff frequency. It is also demonstrated that HALO-DMG structure possesses two perceivable steps in potential profile of the channel, which leads to another lateral electric field peak inside the channel, thus improve both carrier efficiency and the immunity against short-channel effects (SCE). Finally, the high-frequency characteristics of the CNTFETs have been discussed based on the channel vertical electric field distributions. The parasitic capacitance has a great influence on the cutoff frequency, and limits the RF performance of the device.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.sse.2013.10.014</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-1101 |
ispartof | Solid-state electronics, 2014-01, Vol.91, p.147-151 |
issn | 0038-1101 1879-2405 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671480397 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Capacitance Channels CNTFETs Cross-disciplinary physics: materials science rheology Devices Dual-material-gate Electric fields Electronics Exact sciences and technology Gates Halo doping Halos Materials science Molecular electronics, nanoelectronics Nanoscale materials and structures: fabrication and characterization Nanotubes Non-equilibrium Green’s functions (NEGF) Physics Poisson equation Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Short-channel effects (SCE) Simulation Transistors |
title | Quantum simulation study of single halo dual-material gate CNTFETs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20simulation%20study%20of%20single%20halo%20dual-material%20gate%20CNTFETs&rft.jtitle=Solid-state%20electronics&rft.au=Wang,%20Wei&rft.date=2014-01&rft.volume=91&rft.spage=147&rft.epage=151&rft.pages=147-151&rft.issn=0038-1101&rft.eissn=1879-2405&rft_id=info:doi/10.1016/j.sse.2013.10.014&rft_dat=%3Cproquest_cross%3E1671480397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671480397&rft_id=info:pmid/&rft_els_id=S0038110113003195&rfr_iscdi=true |