Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form

This paper studies output feedback stabilization of Takagi–Sugeno fuzzy systems with input or state constraint and bounded noise. A dynamic output feedback controller is adopted, rather than a controller based on the state observer. The notion of quadratic boundedness specified by a common Lyapunov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2009-09, Vol.45 (9), p.2093-2098
1. Verfasser: Ding, Baocang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2098
container_issue 9
container_start_page 2093
container_title Automatica (Oxford)
container_volume 45
creator Ding, Baocang
description This paper studies output feedback stabilization of Takagi–Sugeno fuzzy systems with input or state constraint and bounded noise. A dynamic output feedback controller is adopted, rather than a controller based on the state observer. The notion of quadratic boundedness specified by a common Lyapunov matrix, which is novel in fuzzy control, is invoked to handle the noise. Under the proposed controller, the state of the closed-loop system is stabilizing to an ellipsoid specified by this common Lyapunov matrix. Two numerical examples are given to show the effectiveness of the controller.
doi_str_mv 10.1016/j.automatica.2009.05.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671472407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109809002532</els_id><sourcerecordid>1671472407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-623c8e99ce8347cad498a4af5e822e7187abab63b51c14c323248445bccb69da3</originalsourceid><addsrcrecordid>eNqFUMuO1DAQtBBIDAv_4AsSlwS_kjhHWPGSVkKI5Wx17M7Ks4k92M5Kc9t_4MTv7Zfg0azgyKkfqurqKkIoZy1nvH-7b2ErcYXiLbSCsbFlXcv48ITsuB5kI7Tsn5IdY6xrOBv1c_Ii530dFddiR-K3DVw6sekUt-DQBcyZ3nmg7hhgrfu4lcNW6IzoJrC3dI6J2hhySeADOhpiWGoDieZjLrhm6gO9hlu48Q_3v75vNxjiw_3vfCKuL8mzGZaMrx7rBfnx8cP15efm6uunL5fvrhorNS9NL6TVOI4WtVSDBadGDQrmDrUQOFRnMMHUy6njlisrhRRKK9VN1k796EBekDfnu4cUf26Yi1l9trgsEDBu2fB-4GoQig0Vqs9Qm2LOCWdzSH6FdDScmVPGZm_-ZWxOGRvWmZpxpb5-VIFsYZkTBOvzX76of469UhX3_ozDavnOYzLZegwWnU9oi3HR_1_sD-Vom_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671472407</pqid></control><display><type>article</type><title>Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ding, Baocang</creator><creatorcontrib>Ding, Baocang</creatorcontrib><description>This paper studies output feedback stabilization of Takagi–Sugeno fuzzy systems with input or state constraint and bounded noise. A dynamic output feedback controller is adopted, rather than a controller based on the state observer. The notion of quadratic boundedness specified by a common Lyapunov matrix, which is novel in fuzzy control, is invoked to handle the noise. Under the proposed controller, the state of the closed-loop system is stabilizing to an ellipsoid specified by this common Lyapunov matrix. Two numerical examples are given to show the effectiveness of the controller.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2009.05.017</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Constrained systems ; Control systems ; Control theory. Systems ; Dynamical systems ; Ellipsoids ; Exact sciences and technology ; Fuzzy control ; Modelling and identification ; Noise ; Nonlinear dynamics ; Output feedback ; Quadratic boundedness ; Stability ; Stabilization ; State observers</subject><ispartof>Automatica (Oxford), 2009-09, Vol.45 (9), p.2093-2098</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-623c8e99ce8347cad498a4af5e822e7187abab63b51c14c323248445bccb69da3</citedby><cites>FETCH-LOGICAL-c381t-623c8e99ce8347cad498a4af5e822e7187abab63b51c14c323248445bccb69da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.automatica.2009.05.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21879644$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Baocang</creatorcontrib><title>Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form</title><title>Automatica (Oxford)</title><description>This paper studies output feedback stabilization of Takagi–Sugeno fuzzy systems with input or state constraint and bounded noise. A dynamic output feedback controller is adopted, rather than a controller based on the state observer. The notion of quadratic boundedness specified by a common Lyapunov matrix, which is novel in fuzzy control, is invoked to handle the noise. Under the proposed controller, the state of the closed-loop system is stabilizing to an ellipsoid specified by this common Lyapunov matrix. Two numerical examples are given to show the effectiveness of the controller.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Constrained systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Dynamical systems</subject><subject>Ellipsoids</subject><subject>Exact sciences and technology</subject><subject>Fuzzy control</subject><subject>Modelling and identification</subject><subject>Noise</subject><subject>Nonlinear dynamics</subject><subject>Output feedback</subject><subject>Quadratic boundedness</subject><subject>Stability</subject><subject>Stabilization</subject><subject>State observers</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFUMuO1DAQtBBIDAv_4AsSlwS_kjhHWPGSVkKI5Wx17M7Ks4k92M5Kc9t_4MTv7Zfg0azgyKkfqurqKkIoZy1nvH-7b2ErcYXiLbSCsbFlXcv48ITsuB5kI7Tsn5IdY6xrOBv1c_Ii530dFddiR-K3DVw6sekUt-DQBcyZ3nmg7hhgrfu4lcNW6IzoJrC3dI6J2hhySeADOhpiWGoDieZjLrhm6gO9hlu48Q_3v75vNxjiw_3vfCKuL8mzGZaMrx7rBfnx8cP15efm6uunL5fvrhorNS9NL6TVOI4WtVSDBadGDQrmDrUQOFRnMMHUy6njlisrhRRKK9VN1k796EBekDfnu4cUf26Yi1l9trgsEDBu2fB-4GoQig0Vqs9Qm2LOCWdzSH6FdDScmVPGZm_-ZWxOGRvWmZpxpb5-VIFsYZkTBOvzX76of469UhX3_ozDavnOYzLZegwWnU9oi3HR_1_sD-Vom_M</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Ding, Baocang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090901</creationdate><title>Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form</title><author>Ding, Baocang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-623c8e99ce8347cad498a4af5e822e7187abab63b51c14c323248445bccb69da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Constrained systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Dynamical systems</topic><topic>Ellipsoids</topic><topic>Exact sciences and technology</topic><topic>Fuzzy control</topic><topic>Modelling and identification</topic><topic>Noise</topic><topic>Nonlinear dynamics</topic><topic>Output feedback</topic><topic>Quadratic boundedness</topic><topic>Stability</topic><topic>Stabilization</topic><topic>State observers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Baocang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Baocang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form</atitle><jtitle>Automatica (Oxford)</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>45</volume><issue>9</issue><spage>2093</spage><epage>2098</epage><pages>2093-2098</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>This paper studies output feedback stabilization of Takagi–Sugeno fuzzy systems with input or state constraint and bounded noise. A dynamic output feedback controller is adopted, rather than a controller based on the state observer. The notion of quadratic boundedness specified by a common Lyapunov matrix, which is novel in fuzzy control, is invoked to handle the noise. Under the proposed controller, the state of the closed-loop system is stabilizing to an ellipsoid specified by this common Lyapunov matrix. Two numerical examples are given to show the effectiveness of the controller.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2009.05.017</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2009-09, Vol.45 (9), p.2093-2098
issn 0005-1098
1873-2836
language eng
recordid cdi_proquest_miscellaneous_1671472407
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Computer science
control theory
systems
Constrained systems
Control systems
Control theory. Systems
Dynamical systems
Ellipsoids
Exact sciences and technology
Fuzzy control
Modelling and identification
Noise
Nonlinear dynamics
Output feedback
Quadratic boundedness
Stability
Stabilization
State observers
title Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadratic%20boundedness%20via%20dynamic%20output%20feedback%20for%20constrained%20nonlinear%20systems%20in%20Takagi%E2%80%93Sugeno%E2%80%99s%20form&rft.jtitle=Automatica%20(Oxford)&rft.au=Ding,%20Baocang&rft.date=2009-09-01&rft.volume=45&rft.issue=9&rft.spage=2093&rft.epage=2098&rft.pages=2093-2098&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2009.05.017&rft_dat=%3Cproquest_cross%3E1671472407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671472407&rft_id=info:pmid/&rft_els_id=S0005109809002532&rfr_iscdi=true