Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form
This paper studies output feedback stabilization of Takagi–Sugeno fuzzy systems with input or state constraint and bounded noise. A dynamic output feedback controller is adopted, rather than a controller based on the state observer. The notion of quadratic boundedness specified by a common Lyapunov...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2009-09, Vol.45 (9), p.2093-2098 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2098 |
---|---|
container_issue | 9 |
container_start_page | 2093 |
container_title | Automatica (Oxford) |
container_volume | 45 |
creator | Ding, Baocang |
description | This paper studies output feedback stabilization of Takagi–Sugeno fuzzy systems with input or state constraint and bounded noise. A dynamic output feedback controller is adopted, rather than a controller based on the state observer. The notion of quadratic boundedness specified by a common Lyapunov matrix, which is novel in fuzzy control, is invoked to handle the noise. Under the proposed controller, the state of the closed-loop system is stabilizing to an ellipsoid specified by this common Lyapunov matrix. Two numerical examples are given to show the effectiveness of the controller. |
doi_str_mv | 10.1016/j.automatica.2009.05.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671472407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109809002532</els_id><sourcerecordid>1671472407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-623c8e99ce8347cad498a4af5e822e7187abab63b51c14c323248445bccb69da3</originalsourceid><addsrcrecordid>eNqFUMuO1DAQtBBIDAv_4AsSlwS_kjhHWPGSVkKI5Wx17M7Ks4k92M5Kc9t_4MTv7Zfg0azgyKkfqurqKkIoZy1nvH-7b2ErcYXiLbSCsbFlXcv48ITsuB5kI7Tsn5IdY6xrOBv1c_Ii530dFddiR-K3DVw6sekUt-DQBcyZ3nmg7hhgrfu4lcNW6IzoJrC3dI6J2hhySeADOhpiWGoDieZjLrhm6gO9hlu48Q_3v75vNxjiw_3vfCKuL8mzGZaMrx7rBfnx8cP15efm6uunL5fvrhorNS9NL6TVOI4WtVSDBadGDQrmDrUQOFRnMMHUy6njlisrhRRKK9VN1k796EBekDfnu4cUf26Yi1l9trgsEDBu2fB-4GoQig0Vqs9Qm2LOCWdzSH6FdDScmVPGZm_-ZWxOGRvWmZpxpb5-VIFsYZkTBOvzX76of469UhX3_ozDavnOYzLZegwWnU9oi3HR_1_sD-Vom_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671472407</pqid></control><display><type>article</type><title>Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ding, Baocang</creator><creatorcontrib>Ding, Baocang</creatorcontrib><description>This paper studies output feedback stabilization of Takagi–Sugeno fuzzy systems with input or state constraint and bounded noise. A dynamic output feedback controller is adopted, rather than a controller based on the state observer. The notion of quadratic boundedness specified by a common Lyapunov matrix, which is novel in fuzzy control, is invoked to handle the noise. Under the proposed controller, the state of the closed-loop system is stabilizing to an ellipsoid specified by this common Lyapunov matrix. Two numerical examples are given to show the effectiveness of the controller.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2009.05.017</identifier><identifier>CODEN: ATCAA9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Constrained systems ; Control systems ; Control theory. Systems ; Dynamical systems ; Ellipsoids ; Exact sciences and technology ; Fuzzy control ; Modelling and identification ; Noise ; Nonlinear dynamics ; Output feedback ; Quadratic boundedness ; Stability ; Stabilization ; State observers</subject><ispartof>Automatica (Oxford), 2009-09, Vol.45 (9), p.2093-2098</ispartof><rights>2009 Elsevier Ltd</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-623c8e99ce8347cad498a4af5e822e7187abab63b51c14c323248445bccb69da3</citedby><cites>FETCH-LOGICAL-c381t-623c8e99ce8347cad498a4af5e822e7187abab63b51c14c323248445bccb69da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.automatica.2009.05.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21879644$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Baocang</creatorcontrib><title>Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form</title><title>Automatica (Oxford)</title><description>This paper studies output feedback stabilization of Takagi–Sugeno fuzzy systems with input or state constraint and bounded noise. A dynamic output feedback controller is adopted, rather than a controller based on the state observer. The notion of quadratic boundedness specified by a common Lyapunov matrix, which is novel in fuzzy control, is invoked to handle the noise. Under the proposed controller, the state of the closed-loop system is stabilizing to an ellipsoid specified by this common Lyapunov matrix. Two numerical examples are given to show the effectiveness of the controller.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Constrained systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>Dynamical systems</subject><subject>Ellipsoids</subject><subject>Exact sciences and technology</subject><subject>Fuzzy control</subject><subject>Modelling and identification</subject><subject>Noise</subject><subject>Nonlinear dynamics</subject><subject>Output feedback</subject><subject>Quadratic boundedness</subject><subject>Stability</subject><subject>Stabilization</subject><subject>State observers</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFUMuO1DAQtBBIDAv_4AsSlwS_kjhHWPGSVkKI5Wx17M7Ks4k92M5Kc9t_4MTv7Zfg0azgyKkfqurqKkIoZy1nvH-7b2ErcYXiLbSCsbFlXcv48ITsuB5kI7Tsn5IdY6xrOBv1c_Ii530dFddiR-K3DVw6sekUt-DQBcyZ3nmg7hhgrfu4lcNW6IzoJrC3dI6J2hhySeADOhpiWGoDieZjLrhm6gO9hlu48Q_3v75vNxjiw_3vfCKuL8mzGZaMrx7rBfnx8cP15efm6uunL5fvrhorNS9NL6TVOI4WtVSDBadGDQrmDrUQOFRnMMHUy6njlisrhRRKK9VN1k796EBekDfnu4cUf26Yi1l9trgsEDBu2fB-4GoQig0Vqs9Qm2LOCWdzSH6FdDScmVPGZm_-ZWxOGRvWmZpxpb5-VIFsYZkTBOvzX76of469UhX3_ozDavnOYzLZegwWnU9oi3HR_1_sD-Vom_M</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Ding, Baocang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090901</creationdate><title>Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form</title><author>Ding, Baocang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-623c8e99ce8347cad498a4af5e822e7187abab63b51c14c323248445bccb69da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Constrained systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>Dynamical systems</topic><topic>Ellipsoids</topic><topic>Exact sciences and technology</topic><topic>Fuzzy control</topic><topic>Modelling and identification</topic><topic>Noise</topic><topic>Nonlinear dynamics</topic><topic>Output feedback</topic><topic>Quadratic boundedness</topic><topic>Stability</topic><topic>Stabilization</topic><topic>State observers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Baocang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Baocang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form</atitle><jtitle>Automatica (Oxford)</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>45</volume><issue>9</issue><spage>2093</spage><epage>2098</epage><pages>2093-2098</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><coden>ATCAA9</coden><abstract>This paper studies output feedback stabilization of Takagi–Sugeno fuzzy systems with input or state constraint and bounded noise. A dynamic output feedback controller is adopted, rather than a controller based on the state observer. The notion of quadratic boundedness specified by a common Lyapunov matrix, which is novel in fuzzy control, is invoked to handle the noise. Under the proposed controller, the state of the closed-loop system is stabilizing to an ellipsoid specified by this common Lyapunov matrix. Two numerical examples are given to show the effectiveness of the controller.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2009.05.017</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 2009-09, Vol.45 (9), p.2093-2098 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671472407 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Computer science control theory systems Constrained systems Control systems Control theory. Systems Dynamical systems Ellipsoids Exact sciences and technology Fuzzy control Modelling and identification Noise Nonlinear dynamics Output feedback Quadratic boundedness Stability Stabilization State observers |
title | Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi–Sugeno’s form |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadratic%20boundedness%20via%20dynamic%20output%20feedback%20for%20constrained%20nonlinear%20systems%20in%20Takagi%E2%80%93Sugeno%E2%80%99s%20form&rft.jtitle=Automatica%20(Oxford)&rft.au=Ding,%20Baocang&rft.date=2009-09-01&rft.volume=45&rft.issue=9&rft.spage=2093&rft.epage=2098&rft.pages=2093-2098&rft.issn=0005-1098&rft.eissn=1873-2836&rft.coden=ATCAA9&rft_id=info:doi/10.1016/j.automatica.2009.05.017&rft_dat=%3Cproquest_cross%3E1671472407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671472407&rft_id=info:pmid/&rft_els_id=S0005109809002532&rfr_iscdi=true |