Detecting proton exchange membrane fuel cell hydrogen leak using electrochemical impedance spectroscopy method

When a proton exchange membrane (PEM) fuel cell runs short of hydrogen, it suffers from a reverse potential fault that, when driven by neighboring cells, can lead to anode catalyst degradation and holes in the membrane due to local heat generation. As a result, hydrogen leaks through the electricall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2014, Vol.246, p.110-116
Hauptverfasser: MOUSA, Ghassan, GOLNARAGHI, Farid, DEVAAL, Jake, ALAN YOUNG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue
container_start_page 110
container_title Journal of power sources
container_volume 246
creator MOUSA, Ghassan
GOLNARAGHI, Farid
DEVAAL, Jake
ALAN YOUNG
description When a proton exchange membrane (PEM) fuel cell runs short of hydrogen, it suffers from a reverse potential fault that, when driven by neighboring cells, can lead to anode catalyst degradation and holes in the membrane due to local heat generation. As a result, hydrogen leaks through the electrically-shorted membrane-electrode assembly (MEA) without being reacted, and a reduction in fuel cell voltage is noticed. Such voltage reduction can be detected by using electrochemical impedance spectroscopy (EIS). To fully understand the reverse potential fault, the effect of hydrogen crossover leakage in a commercial MEA is measured by EIS at different differential pressures between the anode and cathode. Then the signatures of these leaky cells were compared with the signatures of a no-leaky cells at different oxygen concentrations with the same current densities. The eventual intent of this early stage work is to develop an on-board diagnostics system that can be used to detect and possibly prevent cell reversal failures, and to permit understanding the status of crossover or transfer leaks versus time in operation.
doi_str_mv 10.1016/j.jpowsour.2013.07.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671470944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1505345323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-410a707ba4a8dc8c3497a385d386904fb8badc76447fc99ec00427b943a99f183</originalsourceid><addsrcrecordid>eNqFUUFu2zAQJIoUiOP0CwEvAXqRuhRJkTwWTpMWMNBLeyYoamXLlURFlJD696ETt1ef9rAzszszhNwxyBmw8sshP4zhJYZlygtgPAeVA9MfyIppxbNCSXlFVsCVzpSS_JrcxHgAAMYUrMjwgDP6uR12dJzCHAaKf_3eDTukPfbV5AakzYId9dh1dH-sp7DDgXbo_tAlnmjYJf4U_B771ruOtv2ItRs80ji-baIP4zGpzftQ35KPjesifjrPNfn9-O3X5nu2_fn0Y_N1m3lRsDkTDJwCVTnhdO2158Iox7WsuS4NiKbSlau9KoVQjTcGPYAoVGUEd8Y0TPM1-fyum0w9Lxhn27fxZCH5CUu0rFRMKDBCXIZKkFxIXvDLUJHCltokwpqU71CfAogTNnac2t5NR8vAnmqzB_uvNnuqzYKy8Pb5_fmGiynOJjXg2_ifXehCCuCGvwJV5JzL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475558905</pqid></control><display><type>article</type><title>Detecting proton exchange membrane fuel cell hydrogen leak using electrochemical impedance spectroscopy method</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>MOUSA, Ghassan ; GOLNARAGHI, Farid ; DEVAAL, Jake ; ALAN YOUNG</creator><creatorcontrib>MOUSA, Ghassan ; GOLNARAGHI, Farid ; DEVAAL, Jake ; ALAN YOUNG</creatorcontrib><description>When a proton exchange membrane (PEM) fuel cell runs short of hydrogen, it suffers from a reverse potential fault that, when driven by neighboring cells, can lead to anode catalyst degradation and holes in the membrane due to local heat generation. As a result, hydrogen leaks through the electrically-shorted membrane-electrode assembly (MEA) without being reacted, and a reduction in fuel cell voltage is noticed. Such voltage reduction can be detected by using electrochemical impedance spectroscopy (EIS). To fully understand the reverse potential fault, the effect of hydrogen crossover leakage in a commercial MEA is measured by EIS at different differential pressures between the anode and cathode. Then the signatures of these leaky cells were compared with the signatures of a no-leaky cells at different oxygen concentrations with the same current densities. The eventual intent of this early stage work is to develop an on-board diagnostics system that can be used to detect and possibly prevent cell reversal failures, and to permit understanding the status of crossover or transfer leaks versus time in operation.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.07.018</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Applied sciences ; Crossovers ; Current density ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemical impedance spectroscopy ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Faults ; Fuel cells ; Leaks ; Membranes ; Signatures</subject><ispartof>Journal of power sources, 2014, Vol.246, p.110-116</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-410a707ba4a8dc8c3497a385d386904fb8badc76447fc99ec00427b943a99f183</citedby><cites>FETCH-LOGICAL-c421t-410a707ba4a8dc8c3497a385d386904fb8badc76447fc99ec00427b943a99f183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27921,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28254039$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MOUSA, Ghassan</creatorcontrib><creatorcontrib>GOLNARAGHI, Farid</creatorcontrib><creatorcontrib>DEVAAL, Jake</creatorcontrib><creatorcontrib>ALAN YOUNG</creatorcontrib><title>Detecting proton exchange membrane fuel cell hydrogen leak using electrochemical impedance spectroscopy method</title><title>Journal of power sources</title><description>When a proton exchange membrane (PEM) fuel cell runs short of hydrogen, it suffers from a reverse potential fault that, when driven by neighboring cells, can lead to anode catalyst degradation and holes in the membrane due to local heat generation. As a result, hydrogen leaks through the electrically-shorted membrane-electrode assembly (MEA) without being reacted, and a reduction in fuel cell voltage is noticed. Such voltage reduction can be detected by using electrochemical impedance spectroscopy (EIS). To fully understand the reverse potential fault, the effect of hydrogen crossover leakage in a commercial MEA is measured by EIS at different differential pressures between the anode and cathode. Then the signatures of these leaky cells were compared with the signatures of a no-leaky cells at different oxygen concentrations with the same current densities. The eventual intent of this early stage work is to develop an on-board diagnostics system that can be used to detect and possibly prevent cell reversal failures, and to permit understanding the status of crossover or transfer leaks versus time in operation.</description><subject>Applied sciences</subject><subject>Crossovers</subject><subject>Current density</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Faults</subject><subject>Fuel cells</subject><subject>Leaks</subject><subject>Membranes</subject><subject>Signatures</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFUUFu2zAQJIoUiOP0CwEvAXqRuhRJkTwWTpMWMNBLeyYoamXLlURFlJD696ETt1ef9rAzszszhNwxyBmw8sshP4zhJYZlygtgPAeVA9MfyIppxbNCSXlFVsCVzpSS_JrcxHgAAMYUrMjwgDP6uR12dJzCHAaKf_3eDTukPfbV5AakzYId9dh1dH-sp7DDgXbo_tAlnmjYJf4U_B771ruOtv2ItRs80ji-baIP4zGpzftQ35KPjesifjrPNfn9-O3X5nu2_fn0Y_N1m3lRsDkTDJwCVTnhdO2158Iox7WsuS4NiKbSlau9KoVQjTcGPYAoVGUEd8Y0TPM1-fyum0w9Lxhn27fxZCH5CUu0rFRMKDBCXIZKkFxIXvDLUJHCltokwpqU71CfAogTNnac2t5NR8vAnmqzB_uvNnuqzYKy8Pb5_fmGiynOJjXg2_ifXehCCuCGvwJV5JzL</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>MOUSA, Ghassan</creator><creator>GOLNARAGHI, Farid</creator><creator>DEVAAL, Jake</creator><creator>ALAN YOUNG</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2014</creationdate><title>Detecting proton exchange membrane fuel cell hydrogen leak using electrochemical impedance spectroscopy method</title><author>MOUSA, Ghassan ; GOLNARAGHI, Farid ; DEVAAL, Jake ; ALAN YOUNG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-410a707ba4a8dc8c3497a385d386904fb8badc76447fc99ec00427b943a99f183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Crossovers</topic><topic>Current density</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Faults</topic><topic>Fuel cells</topic><topic>Leaks</topic><topic>Membranes</topic><topic>Signatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MOUSA, Ghassan</creatorcontrib><creatorcontrib>GOLNARAGHI, Farid</creatorcontrib><creatorcontrib>DEVAAL, Jake</creatorcontrib><creatorcontrib>ALAN YOUNG</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MOUSA, Ghassan</au><au>GOLNARAGHI, Farid</au><au>DEVAAL, Jake</au><au>ALAN YOUNG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting proton exchange membrane fuel cell hydrogen leak using electrochemical impedance spectroscopy method</atitle><jtitle>Journal of power sources</jtitle><date>2014</date><risdate>2014</risdate><volume>246</volume><spage>110</spage><epage>116</epage><pages>110-116</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>When a proton exchange membrane (PEM) fuel cell runs short of hydrogen, it suffers from a reverse potential fault that, when driven by neighboring cells, can lead to anode catalyst degradation and holes in the membrane due to local heat generation. As a result, hydrogen leaks through the electrically-shorted membrane-electrode assembly (MEA) without being reacted, and a reduction in fuel cell voltage is noticed. Such voltage reduction can be detected by using electrochemical impedance spectroscopy (EIS). To fully understand the reverse potential fault, the effect of hydrogen crossover leakage in a commercial MEA is measured by EIS at different differential pressures between the anode and cathode. Then the signatures of these leaky cells were compared with the signatures of a no-leaky cells at different oxygen concentrations with the same current densities. The eventual intent of this early stage work is to develop an on-board diagnostics system that can be used to detect and possibly prevent cell reversal failures, and to permit understanding the status of crossover or transfer leaks versus time in operation.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.jpowsour.2013.07.018</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2014, Vol.246, p.110-116
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1671470944
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Crossovers
Current density
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrochemical impedance spectroscopy
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Faults
Fuel cells
Leaks
Membranes
Signatures
title Detecting proton exchange membrane fuel cell hydrogen leak using electrochemical impedance spectroscopy method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A17%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20proton%20exchange%20membrane%20fuel%20cell%20hydrogen%20leak%20using%20electrochemical%20impedance%20spectroscopy%20method&rft.jtitle=Journal%20of%20power%20sources&rft.au=MOUSA,%20Ghassan&rft.date=2014&rft.volume=246&rft.spage=110&rft.epage=116&rft.pages=110-116&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.07.018&rft_dat=%3Cproquest_cross%3E1505345323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1475558905&rft_id=info:pmid/&rfr_iscdi=true