Affect analysis in context of characters in narratives

► We perform research in character/person-based textual affect analysis of narratives. ► We propose a method for subject extraction from sentence based on anaphora. ► We compare two methods for affect analysis, first using WordNet, second using ML-Ask. ► The evaluation showed significant improvement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2013-01, Vol.40 (1), p.168-176
Hauptverfasser: Ptaszynski, Michal, Dokoshi, Hiroaki, Oyama, Satoshi, Rzepka, Rafal, Kurihara, Masahito, Araki, Kenji, Momouchi, Yoshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue 1
container_start_page 168
container_title Expert systems with applications
container_volume 40
creator Ptaszynski, Michal
Dokoshi, Hiroaki
Oyama, Satoshi
Rzepka, Rafal
Kurihara, Masahito
Araki, Kenji
Momouchi, Yoshio
description ► We perform research in character/person-based textual affect analysis of narratives. ► We propose a method for subject extraction from sentence based on anaphora. ► We compare two methods for affect analysis, first using WordNet, second using ML-Ask. ► The evaluation showed significant improvement with the use of ML-Ask over WordNet. This paper presents our research in text-based affect analysis (AA) of narratives. AA represents a task of estimating or recognizing emotions elicited by a certain semiotic modality. In text-based AA the modality in focus is the textual representation of language. In this research we study particularly one type of language realization, namely narratives (e.g., stories, fairy tales, etc.). Affect analysis within the context of narratives is a challenging task because narratives are created of different kinds of sentences (descriptions, dialogs, etc.). Moreover, different characters become subjects of different emotional expressions in different parts of narratives. In this research we address the problem of person/character related affect recognition in narratives. We propose a method for emotion subject extraction from a sentence based on analysis of anaphoric expressions and compare two methods for affect analysis. We evaluate the system and discuss its possible future improvements.
doi_str_mv 10.1016/j.eswa.2012.07.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671470772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417412008809</els_id><sourcerecordid>1671470772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-a258d10e26ec71437226354c1a24c2b68c774bb6e401e9334bd1315955c7e3f73</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKdcBC-J-5WdBryU4hcUvOh52UwmuCVN6m5a7b83scWjpznM877DPIxdC54JLszdKqP45TLJhcw4ZFzmJ2wiZqBSA4U6ZRNe5JBqAfqcXcS44lwA5zBhZl7XhH3iWtfso4-JbxPs2p6--6SrE_xwwWFP4XfRuhBc73cUL9lZ7ZpIV8c5Ze-PD2-L53T5-vSymC9T1LLoUyfzWSU4SUMIQiuQ0qhco3BSoyzNDAF0WRrSXFChlC4roURe5DkCqRrUlN0eejeh-9xS7O3aR6SmcS1122iFGWqBA8gBlQcUQxdjoNpugl-7sLeC21GSXdlRkh0lWQ52kDSEbo79LqJr6uBa9PEvKWHwNitG7v7A0fDszlOwET21SJUPgz5bdf6_Mz82HXtx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671470772</pqid></control><display><type>article</type><title>Affect analysis in context of characters in narratives</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ptaszynski, Michal ; Dokoshi, Hiroaki ; Oyama, Satoshi ; Rzepka, Rafal ; Kurihara, Masahito ; Araki, Kenji ; Momouchi, Yoshio</creator><creatorcontrib>Ptaszynski, Michal ; Dokoshi, Hiroaki ; Oyama, Satoshi ; Rzepka, Rafal ; Kurihara, Masahito ; Araki, Kenji ; Momouchi, Yoshio</creatorcontrib><description>► We perform research in character/person-based textual affect analysis of narratives. ► We propose a method for subject extraction from sentence based on anaphora. ► We compare two methods for affect analysis, first using WordNet, second using ML-Ask. ► The evaluation showed significant improvement with the use of ML-Ask over WordNet. This paper presents our research in text-based affect analysis (AA) of narratives. AA represents a task of estimating or recognizing emotions elicited by a certain semiotic modality. In text-based AA the modality in focus is the textual representation of language. In this research we study particularly one type of language realization, namely narratives (e.g., stories, fairy tales, etc.). Affect analysis within the context of narratives is a challenging task because narratives are created of different kinds of sentences (descriptions, dialogs, etc.). Moreover, different characters become subjects of different emotional expressions in different parts of narratives. In this research we address the problem of person/character related affect recognition in narratives. We propose a method for emotion subject extraction from a sentence based on analysis of anaphoric expressions and compare two methods for affect analysis. We evaluate the system and discuss its possible future improvements.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2012.07.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Affect analysis ; Applied sciences ; Artificial intelligence ; Character recognition ; Computer science; control theory; systems ; Descriptions ; Emotions ; Exact sciences and technology ; Expert systems ; Narratives ; Natural Language Processing ; Pattern recognition. Digital image processing. Computational geometry ; Recognition ; Sentences ; Speech and sound recognition and synthesis. Linguistics ; Tasks</subject><ispartof>Expert systems with applications, 2013-01, Vol.40 (1), p.168-176</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-a258d10e26ec71437226354c1a24c2b68c774bb6e401e9334bd1315955c7e3f73</citedby><cites>FETCH-LOGICAL-c429t-a258d10e26ec71437226354c1a24c2b68c774bb6e401e9334bd1315955c7e3f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2012.07.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4022,27922,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27095895$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ptaszynski, Michal</creatorcontrib><creatorcontrib>Dokoshi, Hiroaki</creatorcontrib><creatorcontrib>Oyama, Satoshi</creatorcontrib><creatorcontrib>Rzepka, Rafal</creatorcontrib><creatorcontrib>Kurihara, Masahito</creatorcontrib><creatorcontrib>Araki, Kenji</creatorcontrib><creatorcontrib>Momouchi, Yoshio</creatorcontrib><title>Affect analysis in context of characters in narratives</title><title>Expert systems with applications</title><description>► We perform research in character/person-based textual affect analysis of narratives. ► We propose a method for subject extraction from sentence based on anaphora. ► We compare two methods for affect analysis, first using WordNet, second using ML-Ask. ► The evaluation showed significant improvement with the use of ML-Ask over WordNet. This paper presents our research in text-based affect analysis (AA) of narratives. AA represents a task of estimating or recognizing emotions elicited by a certain semiotic modality. In text-based AA the modality in focus is the textual representation of language. In this research we study particularly one type of language realization, namely narratives (e.g., stories, fairy tales, etc.). Affect analysis within the context of narratives is a challenging task because narratives are created of different kinds of sentences (descriptions, dialogs, etc.). Moreover, different characters become subjects of different emotional expressions in different parts of narratives. In this research we address the problem of person/character related affect recognition in narratives. We propose a method for emotion subject extraction from a sentence based on analysis of anaphoric expressions and compare two methods for affect analysis. We evaluate the system and discuss its possible future improvements.</description><subject>Affect analysis</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Character recognition</subject><subject>Computer science; control theory; systems</subject><subject>Descriptions</subject><subject>Emotions</subject><subject>Exact sciences and technology</subject><subject>Expert systems</subject><subject>Narratives</subject><subject>Natural Language Processing</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Recognition</subject><subject>Sentences</subject><subject>Speech and sound recognition and synthesis. Linguistics</subject><subject>Tasks</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKdcBC-J-5WdBryU4hcUvOh52UwmuCVN6m5a7b83scWjpznM877DPIxdC54JLszdKqP45TLJhcw4ZFzmJ2wiZqBSA4U6ZRNe5JBqAfqcXcS44lwA5zBhZl7XhH3iWtfso4-JbxPs2p6--6SrE_xwwWFP4XfRuhBc73cUL9lZ7ZpIV8c5Ze-PD2-L53T5-vSymC9T1LLoUyfzWSU4SUMIQiuQ0qhco3BSoyzNDAF0WRrSXFChlC4roURe5DkCqRrUlN0eejeh-9xS7O3aR6SmcS1122iFGWqBA8gBlQcUQxdjoNpugl-7sLeC21GSXdlRkh0lWQ52kDSEbo79LqJr6uBa9PEvKWHwNitG7v7A0fDszlOwET21SJUPgz5bdf6_Mz82HXtx</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Ptaszynski, Michal</creator><creator>Dokoshi, Hiroaki</creator><creator>Oyama, Satoshi</creator><creator>Rzepka, Rafal</creator><creator>Kurihara, Masahito</creator><creator>Araki, Kenji</creator><creator>Momouchi, Yoshio</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>Affect analysis in context of characters in narratives</title><author>Ptaszynski, Michal ; Dokoshi, Hiroaki ; Oyama, Satoshi ; Rzepka, Rafal ; Kurihara, Masahito ; Araki, Kenji ; Momouchi, Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-a258d10e26ec71437226354c1a24c2b68c774bb6e401e9334bd1315955c7e3f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Affect analysis</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Character recognition</topic><topic>Computer science; control theory; systems</topic><topic>Descriptions</topic><topic>Emotions</topic><topic>Exact sciences and technology</topic><topic>Expert systems</topic><topic>Narratives</topic><topic>Natural Language Processing</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Recognition</topic><topic>Sentences</topic><topic>Speech and sound recognition and synthesis. Linguistics</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ptaszynski, Michal</creatorcontrib><creatorcontrib>Dokoshi, Hiroaki</creatorcontrib><creatorcontrib>Oyama, Satoshi</creatorcontrib><creatorcontrib>Rzepka, Rafal</creatorcontrib><creatorcontrib>Kurihara, Masahito</creatorcontrib><creatorcontrib>Araki, Kenji</creatorcontrib><creatorcontrib>Momouchi, Yoshio</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ptaszynski, Michal</au><au>Dokoshi, Hiroaki</au><au>Oyama, Satoshi</au><au>Rzepka, Rafal</au><au>Kurihara, Masahito</au><au>Araki, Kenji</au><au>Momouchi, Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Affect analysis in context of characters in narratives</atitle><jtitle>Expert systems with applications</jtitle><date>2013-01</date><risdate>2013</risdate><volume>40</volume><issue>1</issue><spage>168</spage><epage>176</epage><pages>168-176</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>► We perform research in character/person-based textual affect analysis of narratives. ► We propose a method for subject extraction from sentence based on anaphora. ► We compare two methods for affect analysis, first using WordNet, second using ML-Ask. ► The evaluation showed significant improvement with the use of ML-Ask over WordNet. This paper presents our research in text-based affect analysis (AA) of narratives. AA represents a task of estimating or recognizing emotions elicited by a certain semiotic modality. In text-based AA the modality in focus is the textual representation of language. In this research we study particularly one type of language realization, namely narratives (e.g., stories, fairy tales, etc.). Affect analysis within the context of narratives is a challenging task because narratives are created of different kinds of sentences (descriptions, dialogs, etc.). Moreover, different characters become subjects of different emotional expressions in different parts of narratives. In this research we address the problem of person/character related affect recognition in narratives. We propose a method for emotion subject extraction from a sentence based on analysis of anaphoric expressions and compare two methods for affect analysis. We evaluate the system and discuss its possible future improvements.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2012.07.025</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2013-01, Vol.40 (1), p.168-176
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_miscellaneous_1671470772
source Elsevier ScienceDirect Journals Complete
subjects Affect analysis
Applied sciences
Artificial intelligence
Character recognition
Computer science
control theory
systems
Descriptions
Emotions
Exact sciences and technology
Expert systems
Narratives
Natural Language Processing
Pattern recognition. Digital image processing. Computational geometry
Recognition
Sentences
Speech and sound recognition and synthesis. Linguistics
Tasks
title Affect analysis in context of characters in narratives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A15%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Affect%20analysis%20in%20context%20of%20characters%20in%20narratives&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Ptaszynski,%20Michal&rft.date=2013-01&rft.volume=40&rft.issue=1&rft.spage=168&rft.epage=176&rft.pages=168-176&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2012.07.025&rft_dat=%3Cproquest_cross%3E1671470772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671470772&rft_id=info:pmid/&rft_els_id=S0957417412008809&rfr_iscdi=true