River Flow Lane Detection and Kalman Filtering-Based B-Spline Lane Tracking

A novel lane detection technique using adaptive line segment and river flow method is proposed in this paper to estimate driving lane edges. A Kalman filtering-based B-spline tracking model is also presented to quickly predict lane boundaries in consecutive frames. Firstly, sky region and road shado...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of vehicular technology 2012, Vol.2012 (2012), p.1-10
Hauptverfasser: Lim, King Hann, Seng, Kah Phooi, Ang, Li-Minn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2012
container_start_page 1
container_title International journal of vehicular technology
container_volume 2012
creator Lim, King Hann
Seng, Kah Phooi
Ang, Li-Minn
description A novel lane detection technique using adaptive line segment and river flow method is proposed in this paper to estimate driving lane edges. A Kalman filtering-based B-spline tracking model is also presented to quickly predict lane boundaries in consecutive frames. Firstly, sky region and road shadows are removed by applying a regional dividing method and road region analysis, respectively. Next, the change of lane orientation is monitored in order to define an adaptive line segment separating the region into near and far fields. In the near field, a 1D Hough transform is used to approximate a pair of lane boundaries. Subsequently, river flow method is applied to obtain lane curvature in the far field. Once the lane boundaries are detected, a B-spline mathematical model is updated using a Kalman filter to continuously track the road edges. Simulation results show that the proposed lane detection and tracking method has good performance with low complexity.
doi_str_mv 10.1155/2012/465819
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671468863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671468863</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3709-bf6966b7addb71175b2c2608dd4971e2fd4af975ac04e761eef417763a6e04d43</originalsourceid><addsrcrecordid>eNqF0FFLwzAQB_AgCs7pk89CwRdR6nJpmqSPbjqVDQSdzyFrrprZtTPpHH57Oys--OLTHdzvjuNPyDHQS4A0HTAKbMBFqiDbIT0QSsapBLr721O2Tw5CWFAqOM1Yj0we3Qf6aFzWm2hqKoyuscG8cXUVmcpGE1MuTRWNXdmgd9VLPDQBbTSMn1ala_X3ysyb_K0dHpK9wpQBj35qnzyPb2aju3j6cHs_uprGJpE0i-eFyISYS2PtXALIdM5yJqiylmcSkBWWmyKTqckpRykAseAgpUiMQMotT_rkrLu78vX7GkOjly7kWJbtM_U6aBASuFBKJC09_UMX9dpX7XcamEyUYgpUqy46lfs6BI-FXnm3NP5TA9XbYPU2WN0F2-rzTr-6ypqN-wefdBhbgoX5xVwmMk2SL_qEfqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1273882818</pqid></control><display><type>article</type><title>River Flow Lane Detection and Kalman Filtering-Based B-Spline Lane Tracking</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lim, King Hann ; Seng, Kah Phooi ; Ang, Li-Minn</creator><contributor>Gulliver, T. A.</contributor><creatorcontrib>Lim, King Hann ; Seng, Kah Phooi ; Ang, Li-Minn ; Gulliver, T. A.</creatorcontrib><description>A novel lane detection technique using adaptive line segment and river flow method is proposed in this paper to estimate driving lane edges. A Kalman filtering-based B-spline tracking model is also presented to quickly predict lane boundaries in consecutive frames. Firstly, sky region and road shadows are removed by applying a regional dividing method and road region analysis, respectively. Next, the change of lane orientation is monitored in order to define an adaptive line segment separating the region into near and far fields. In the near field, a 1D Hough transform is used to approximate a pair of lane boundaries. Subsequently, river flow method is applied to obtain lane curvature in the far field. Once the lane boundaries are detected, a B-spline mathematical model is updated using a Kalman filter to continuously track the road edges. Simulation results show that the proposed lane detection and tracking method has good performance with low complexity.</description><identifier>ISSN: 1687-5702</identifier><identifier>EISSN: 1687-5710</identifier><identifier>DOI: 10.1155/2012/465819</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Automation ; Boundaries ; Far fields ; Geometry ; Kalman filters ; Lanes ; Mathematical analysis ; Mathematical functions ; Mathematical models ; River flow ; Roads ; Roads &amp; highways ; Statistical analysis ; Statistical methods ; Studies ; Tracking ; Traffic flow</subject><ispartof>International journal of vehicular technology, 2012, Vol.2012 (2012), p.1-10</ispartof><rights>Copyright © 2012 King Hann Lim et al.</rights><rights>Copyright © 2012 King Hann Lim et al. King Hann Lim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3709-bf6966b7addb71175b2c2608dd4971e2fd4af975ac04e761eef417763a6e04d43</citedby><cites>FETCH-LOGICAL-a3709-bf6966b7addb71175b2c2608dd4971e2fd4af975ac04e761eef417763a6e04d43</cites><orcidid>0000-0002-5679-7747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><contributor>Gulliver, T. A.</contributor><creatorcontrib>Lim, King Hann</creatorcontrib><creatorcontrib>Seng, Kah Phooi</creatorcontrib><creatorcontrib>Ang, Li-Minn</creatorcontrib><title>River Flow Lane Detection and Kalman Filtering-Based B-Spline Lane Tracking</title><title>International journal of vehicular technology</title><description>A novel lane detection technique using adaptive line segment and river flow method is proposed in this paper to estimate driving lane edges. A Kalman filtering-based B-spline tracking model is also presented to quickly predict lane boundaries in consecutive frames. Firstly, sky region and road shadows are removed by applying a regional dividing method and road region analysis, respectively. Next, the change of lane orientation is monitored in order to define an adaptive line segment separating the region into near and far fields. In the near field, a 1D Hough transform is used to approximate a pair of lane boundaries. Subsequently, river flow method is applied to obtain lane curvature in the far field. Once the lane boundaries are detected, a B-spline mathematical model is updated using a Kalman filter to continuously track the road edges. Simulation results show that the proposed lane detection and tracking method has good performance with low complexity.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Boundaries</subject><subject>Far fields</subject><subject>Geometry</subject><subject>Kalman filters</subject><subject>Lanes</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical models</subject><subject>River flow</subject><subject>Roads</subject><subject>Roads &amp; highways</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Studies</subject><subject>Tracking</subject><subject>Traffic flow</subject><issn>1687-5702</issn><issn>1687-5710</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqF0FFLwzAQB_AgCs7pk89CwRdR6nJpmqSPbjqVDQSdzyFrrprZtTPpHH57Oys--OLTHdzvjuNPyDHQS4A0HTAKbMBFqiDbIT0QSsapBLr721O2Tw5CWFAqOM1Yj0we3Qf6aFzWm2hqKoyuscG8cXUVmcpGE1MuTRWNXdmgd9VLPDQBbTSMn1ala_X3ysyb_K0dHpK9wpQBj35qnzyPb2aju3j6cHs_uprGJpE0i-eFyISYS2PtXALIdM5yJqiylmcSkBWWmyKTqckpRykAseAgpUiMQMotT_rkrLu78vX7GkOjly7kWJbtM_U6aBASuFBKJC09_UMX9dpX7XcamEyUYgpUqy46lfs6BI-FXnm3NP5TA9XbYPU2WN0F2-rzTr-6ypqN-wefdBhbgoX5xVwmMk2SL_qEfqE</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Lim, King Hann</creator><creator>Seng, Kah Phooi</creator><creator>Ang, Li-Minn</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-5679-7747</orcidid></search><sort><creationdate>2012</creationdate><title>River Flow Lane Detection and Kalman Filtering-Based B-Spline Lane Tracking</title><author>Lim, King Hann ; Seng, Kah Phooi ; Ang, Li-Minn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3709-bf6966b7addb71175b2c2608dd4971e2fd4af975ac04e761eef417763a6e04d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Boundaries</topic><topic>Far fields</topic><topic>Geometry</topic><topic>Kalman filters</topic><topic>Lanes</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical models</topic><topic>River flow</topic><topic>Roads</topic><topic>Roads &amp; highways</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Studies</topic><topic>Tracking</topic><topic>Traffic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, King Hann</creatorcontrib><creatorcontrib>Seng, Kah Phooi</creatorcontrib><creatorcontrib>Ang, Li-Minn</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, King Hann</au><au>Seng, Kah Phooi</au><au>Ang, Li-Minn</au><au>Gulliver, T. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>River Flow Lane Detection and Kalman Filtering-Based B-Spline Lane Tracking</atitle><jtitle>International journal of vehicular technology</jtitle><date>2012</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1687-5702</issn><eissn>1687-5710</eissn><abstract>A novel lane detection technique using adaptive line segment and river flow method is proposed in this paper to estimate driving lane edges. A Kalman filtering-based B-spline tracking model is also presented to quickly predict lane boundaries in consecutive frames. Firstly, sky region and road shadows are removed by applying a regional dividing method and road region analysis, respectively. Next, the change of lane orientation is monitored in order to define an adaptive line segment separating the region into near and far fields. In the near field, a 1D Hough transform is used to approximate a pair of lane boundaries. Subsequently, river flow method is applied to obtain lane curvature in the far field. Once the lane boundaries are detected, a B-spline mathematical model is updated using a Kalman filter to continuously track the road edges. Simulation results show that the proposed lane detection and tracking method has good performance with low complexity.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><doi>10.1155/2012/465819</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5679-7747</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-5702
ispartof International journal of vehicular technology, 2012, Vol.2012 (2012), p.1-10
issn 1687-5702
1687-5710
language eng
recordid cdi_proquest_miscellaneous_1671468863
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Algorithms
Automation
Boundaries
Far fields
Geometry
Kalman filters
Lanes
Mathematical analysis
Mathematical functions
Mathematical models
River flow
Roads
Roads & highways
Statistical analysis
Statistical methods
Studies
Tracking
Traffic flow
title River Flow Lane Detection and Kalman Filtering-Based B-Spline Lane Tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=River%20Flow%20Lane%20Detection%20and%20Kalman%20Filtering-Based%20B-Spline%20Lane%20Tracking&rft.jtitle=International%20journal%20of%20vehicular%20technology&rft.au=Lim,%20King%20Hann&rft.date=2012&rft.volume=2012&rft.issue=2012&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1687-5702&rft.eissn=1687-5710&rft_id=info:doi/10.1155/2012/465819&rft_dat=%3Cproquest_cross%3E1671468863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1273882818&rft_id=info:pmid/&rfr_iscdi=true