NMR crystallography of α-poly(L-lactide)
A complementary approach that combines NMR measurements, analysis of X-ray and neutron powder diffraction data and advanced quantum mechanical calculations was employed to study the α-polymorph of L-polylactide. Such a strategy, which is known as NMR crystallography, to the best of our knowledge, is...
Gespeichert in:
Veröffentlicht in: | PCCP. Physical chemistry chemical physics (Print) 2013-03, Vol.15 (9), p.3137-3145 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3145 |
---|---|
container_issue | 9 |
container_start_page | 3137 |
container_title | PCCP. Physical chemistry chemical physics (Print) |
container_volume | 15 |
creator | PAWLAK, Tomasz JAWORSKA, Magdalena POTRZEBOWSKI, Marek J |
description | A complementary approach that combines NMR measurements, analysis of X-ray and neutron powder diffraction data and advanced quantum mechanical calculations was employed to study the α-polymorph of L-polylactide. Such a strategy, which is known as NMR crystallography, to the best of our knowledge, is used here for the first time for the fine refinement of the crystal structure of a synthetic polymer. The GIPAW method was used to compute the NMR shielding parameters for the different models, which included the α-PLLA structure obtained by 2-dimensional wide-angle X-ray diffraction (WAXD) at -150 °C (model M1) and at 25 °C (model M2), neutron diffraction (WAND) measurements (model M3) and the fully optimized geometry of the PLLA chains in the unit cell with defined size (model M4). The influence of changes in the chain conformation on the (13)C σ(ii) NMR shielding parameters is shown. The correlation between the σ(ii) and δ(ii) values for the M1-M4 models revealed that the M4 model provided the best fit. Moreover, a comparison of the experimental (13)C NMR spectra with the spectra calculated using the M1-M4 models strongly supports the data for the M4 model. The GIPAW method, via verification using NMR measurements, was shown to be capable of the fine refinement of the crystal structures of polymers when coarse X-ray diffraction data for powdered samples are available. |
doi_str_mv | 10.1039/c2cp43174b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671468656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1285463613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-6fe7fcc3c320ce8e65e77d504c370332b1efcbd39486e7ba5d59b72b6b9d8d5c3</originalsourceid><addsrcrecordid>eNqF0M1Kw0AQwPFFFKvViw8gvQitEN3d2Y_kKMUvqAqi57A72Whk28Td9JDH8kV8JiOt7dHTzOHHwPwJOWH0glHILpFjI4BpYXfIARMKkoymYnezazUghzF-UEqZZLBPBhxAUKXpAZk8PjyPMHSxNd7Xb8E0792oLkffX0lT-248S7zBtirc5IjslcZHd7yeQ_J6c_0yvUtmT7f306tZgiBpm6jS6RIREDhFlzolndaFpAJBUwBumSvRFpCJVDltjSxkZjW3ymZFWkiEIRmv7jah_ly62ObzKqLz3ixcvYw5U7r_K1VS_U95KvsEikFPz1cUQx1jcGXehGpuQpczmv9WzLcVe3y6vru0c1ds6F-2HpytgYlofBnMAqu4dZpnHJiEH27feK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1285463613</pqid></control><display><type>article</type><title>NMR crystallography of α-poly(L-lactide)</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>PAWLAK, Tomasz ; JAWORSKA, Magdalena ; POTRZEBOWSKI, Marek J</creator><creatorcontrib>PAWLAK, Tomasz ; JAWORSKA, Magdalena ; POTRZEBOWSKI, Marek J</creatorcontrib><description>A complementary approach that combines NMR measurements, analysis of X-ray and neutron powder diffraction data and advanced quantum mechanical calculations was employed to study the α-polymorph of L-polylactide. Such a strategy, which is known as NMR crystallography, to the best of our knowledge, is used here for the first time for the fine refinement of the crystal structure of a synthetic polymer. The GIPAW method was used to compute the NMR shielding parameters for the different models, which included the α-PLLA structure obtained by 2-dimensional wide-angle X-ray diffraction (WAXD) at -150 °C (model M1) and at 25 °C (model M2), neutron diffraction (WAND) measurements (model M3) and the fully optimized geometry of the PLLA chains in the unit cell with defined size (model M4). The influence of changes in the chain conformation on the (13)C σ(ii) NMR shielding parameters is shown. The correlation between the σ(ii) and δ(ii) values for the M1-M4 models revealed that the M4 model provided the best fit. Moreover, a comparison of the experimental (13)C NMR spectra with the spectra calculated using the M1-M4 models strongly supports the data for the M4 model. The GIPAW method, via verification using NMR measurements, was shown to be capable of the fine refinement of the crystal structures of polymers when coarse X-ray diffraction data for powdered samples are available.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c2cp43174b</identifier><identifier>PMID: 23340670</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Applied sciences ; Crystal structure ; Crystallography ; Crystallography, X-Ray ; Diffraction ; Exact sciences and technology ; Magnetic Resonance Spectroscopy - methods ; Mathematical models ; Models, Molecular ; Molecular Conformation ; Nuclear magnetic resonance ; Organic polymers ; Physicochemistry of polymers ; Polyesters - chemistry ; Properties and characterization ; Scattering, Small Angle ; Shielding ; Spectra ; Structure, morphology and analysis ; X-rays</subject><ispartof>PCCP. Physical chemistry chemical physics (Print), 2013-03, Vol.15 (9), p.3137-3145</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-6fe7fcc3c320ce8e65e77d504c370332b1efcbd39486e7ba5d59b72b6b9d8d5c3</citedby><cites>FETCH-LOGICAL-c350t-6fe7fcc3c320ce8e65e77d504c370332b1efcbd39486e7ba5d59b72b6b9d8d5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27292315$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23340670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PAWLAK, Tomasz</creatorcontrib><creatorcontrib>JAWORSKA, Magdalena</creatorcontrib><creatorcontrib>POTRZEBOWSKI, Marek J</creatorcontrib><title>NMR crystallography of α-poly(L-lactide)</title><title>PCCP. Physical chemistry chemical physics (Print)</title><addtitle>Phys Chem Chem Phys</addtitle><description>A complementary approach that combines NMR measurements, analysis of X-ray and neutron powder diffraction data and advanced quantum mechanical calculations was employed to study the α-polymorph of L-polylactide. Such a strategy, which is known as NMR crystallography, to the best of our knowledge, is used here for the first time for the fine refinement of the crystal structure of a synthetic polymer. The GIPAW method was used to compute the NMR shielding parameters for the different models, which included the α-PLLA structure obtained by 2-dimensional wide-angle X-ray diffraction (WAXD) at -150 °C (model M1) and at 25 °C (model M2), neutron diffraction (WAND) measurements (model M3) and the fully optimized geometry of the PLLA chains in the unit cell with defined size (model M4). The influence of changes in the chain conformation on the (13)C σ(ii) NMR shielding parameters is shown. The correlation between the σ(ii) and δ(ii) values for the M1-M4 models revealed that the M4 model provided the best fit. Moreover, a comparison of the experimental (13)C NMR spectra with the spectra calculated using the M1-M4 models strongly supports the data for the M4 model. The GIPAW method, via verification using NMR measurements, was shown to be capable of the fine refinement of the crystal structures of polymers when coarse X-ray diffraction data for powdered samples are available.</description><subject>Applied sciences</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Diffraction</subject><subject>Exact sciences and technology</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Mathematical models</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Nuclear magnetic resonance</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polyesters - chemistry</subject><subject>Properties and characterization</subject><subject>Scattering, Small Angle</subject><subject>Shielding</subject><subject>Spectra</subject><subject>Structure, morphology and analysis</subject><subject>X-rays</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M1Kw0AQwPFFFKvViw8gvQitEN3d2Y_kKMUvqAqi57A72Whk28Td9JDH8kV8JiOt7dHTzOHHwPwJOWH0glHILpFjI4BpYXfIARMKkoymYnezazUghzF-UEqZZLBPBhxAUKXpAZk8PjyPMHSxNd7Xb8E0792oLkffX0lT-248S7zBtirc5IjslcZHd7yeQ_J6c_0yvUtmT7f306tZgiBpm6jS6RIREDhFlzolndaFpAJBUwBumSvRFpCJVDltjSxkZjW3ymZFWkiEIRmv7jah_ly62ObzKqLz3ixcvYw5U7r_K1VS_U95KvsEikFPz1cUQx1jcGXehGpuQpczmv9WzLcVe3y6vru0c1ds6F-2HpytgYlofBnMAqu4dZpnHJiEH27feK4</recordid><startdate>20130307</startdate><enddate>20130307</enddate><creator>PAWLAK, Tomasz</creator><creator>JAWORSKA, Magdalena</creator><creator>POTRZEBOWSKI, Marek J</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20130307</creationdate><title>NMR crystallography of α-poly(L-lactide)</title><author>PAWLAK, Tomasz ; JAWORSKA, Magdalena ; POTRZEBOWSKI, Marek J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-6fe7fcc3c320ce8e65e77d504c370332b1efcbd39486e7ba5d59b72b6b9d8d5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Diffraction</topic><topic>Exact sciences and technology</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Mathematical models</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Nuclear magnetic resonance</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polyesters - chemistry</topic><topic>Properties and characterization</topic><topic>Scattering, Small Angle</topic><topic>Shielding</topic><topic>Spectra</topic><topic>Structure, morphology and analysis</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PAWLAK, Tomasz</creatorcontrib><creatorcontrib>JAWORSKA, Magdalena</creatorcontrib><creatorcontrib>POTRZEBOWSKI, Marek J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>PCCP. Physical chemistry chemical physics (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PAWLAK, Tomasz</au><au>JAWORSKA, Magdalena</au><au>POTRZEBOWSKI, Marek J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NMR crystallography of α-poly(L-lactide)</atitle><jtitle>PCCP. Physical chemistry chemical physics (Print)</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2013-03-07</date><risdate>2013</risdate><volume>15</volume><issue>9</issue><spage>3137</spage><epage>3145</epage><pages>3137-3145</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>A complementary approach that combines NMR measurements, analysis of X-ray and neutron powder diffraction data and advanced quantum mechanical calculations was employed to study the α-polymorph of L-polylactide. Such a strategy, which is known as NMR crystallography, to the best of our knowledge, is used here for the first time for the fine refinement of the crystal structure of a synthetic polymer. The GIPAW method was used to compute the NMR shielding parameters for the different models, which included the α-PLLA structure obtained by 2-dimensional wide-angle X-ray diffraction (WAXD) at -150 °C (model M1) and at 25 °C (model M2), neutron diffraction (WAND) measurements (model M3) and the fully optimized geometry of the PLLA chains in the unit cell with defined size (model M4). The influence of changes in the chain conformation on the (13)C σ(ii) NMR shielding parameters is shown. The correlation between the σ(ii) and δ(ii) values for the M1-M4 models revealed that the M4 model provided the best fit. Moreover, a comparison of the experimental (13)C NMR spectra with the spectra calculated using the M1-M4 models strongly supports the data for the M4 model. The GIPAW method, via verification using NMR measurements, was shown to be capable of the fine refinement of the crystal structures of polymers when coarse X-ray diffraction data for powdered samples are available.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>23340670</pmid><doi>10.1039/c2cp43174b</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | PCCP. Physical chemistry chemical physics (Print), 2013-03, Vol.15 (9), p.3137-3145 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671468656 |
source | MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Applied sciences Crystal structure Crystallography Crystallography, X-Ray Diffraction Exact sciences and technology Magnetic Resonance Spectroscopy - methods Mathematical models Models, Molecular Molecular Conformation Nuclear magnetic resonance Organic polymers Physicochemistry of polymers Polyesters - chemistry Properties and characterization Scattering, Small Angle Shielding Spectra Structure, morphology and analysis X-rays |
title | NMR crystallography of α-poly(L-lactide) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A56%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NMR%20crystallography%20of%20%CE%B1-poly(L-lactide)&rft.jtitle=PCCP.%20Physical%20chemistry%20chemical%20physics%20(Print)&rft.au=PAWLAK,%20Tomasz&rft.date=2013-03-07&rft.volume=15&rft.issue=9&rft.spage=3137&rft.epage=3145&rft.pages=3137-3145&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c2cp43174b&rft_dat=%3Cproquest_cross%3E1285463613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1285463613&rft_id=info:pmid/23340670&rfr_iscdi=true |