Generalized limit analysis in poroplasticity by mathematical programming
Classical limit analysis of structures by the statical approach computationally means maximization of a load multiplier under equilibrium and yield condition constraints, namely convex mathematical programming. In elastoplasticity, generalizations of limit analysis had been proposed in order to achi...
Gespeichert in:
Veröffentlicht in: | Archive of applied mechanics (1991) 2010, Vol.80 (1), p.57-72 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Classical limit analysis of structures by the statical approach computationally means maximization of a load multiplier under equilibrium and yield condition constraints, namely convex mathematical programming. In elastoplasticity, generalizations of limit analysis had been proposed in order to achieve, still by load factor constrained optimization, the safety factor with respect to plastic collapse. This paper presents similar generalization in two-phase poroelastoplasticity. A method is here developed (and validated by numerical application to a masonry dam) apt to assess the safety factor of a structure interpretable as a poroplastic system, with respect to both plastic collapse and critical thresholds on deformations, by solving a nonconvex nonsmooth constrained optimization problem usually referred to in the literature as “mathematical program under equilibrium constraints”. Piece-wise linearization of yield surfaces and reduction of yield planes by a “sifting” procedure are adopted to reduce computing efforts. |
---|---|
ISSN: | 0939-1533 1432-0681 |
DOI: | 10.1007/s00419-009-0362-6 |