A Class of Antimagic Join Graphs
A labeling f of a graph G is a bijection from its edge set E(G) to the set {1, 2, ..., |E(G)|}, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y. A graph G is antimagic if G has an f w...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Sinica. English series 2013-05, Vol.29 (5), p.1019-1026 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A labeling f of a graph G is a bijection from its edge set E(G) to the set {1, 2, ..., |E(G)|}, which is antimagic if for any distinct vertices x and y, the sum of the labels on edges incident to x is different from the sum of the labels on edges incident to y. A graph G is antimagic if G has an f which is antimagic. Hartsfield and Ringel conjectured in 1990 that every connected graph other than K2 is antimagic. In this paper, we show that if G1 is an n-vertex graph with minimum degree at least r, and G2 is an m-vertex graph with maximum degree at most 2r - 1 (m ≥ n), then G1 V G2 is antimagic. |
---|---|
ISSN: | 1439-8516 1439-7617 |
DOI: | 10.1007/s10114-012-1559-0 |