Universal energy-level alignment of molecules on metal oxides
Transition-metal oxides improve power conversion efficiencies in organic photovoltaics and are used as low-resistance contacts in organic light-emitting diodes and organic thin-film transistors. What makes metal oxides useful in these technologies is the fact that their chemical and electronic prope...
Gespeichert in:
Veröffentlicht in: | Nature materials 2012-01, Vol.11 (1), p.76-81 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 81 |
---|---|
container_issue | 1 |
container_start_page | 76 |
container_title | Nature materials |
container_volume | 11 |
creator | Greiner, Mark T. Helander, Michael G. Tang, Wing-Man Wang, Zhi-Bin Qiu, Jacky Lu, Zheng-Hong |
description | Transition-metal oxides improve power conversion efficiencies in organic photovoltaics and are used as low-resistance contacts in organic light-emitting diodes and organic thin-film transistors. What makes metal oxides useful in these technologies is the fact that their chemical and electronic properties can be tuned to enable charge exchange with a wide variety of organic molecules. Although it is known that charge exchange relies on the alignment of donor and acceptor energy levels, the mechanism for level alignment remains under debate. Here, we conclusively establish the principle of energy alignment between oxides and molecules. We observe a universal energy-alignment trend for a set of transition-metal oxides—representing a broad diversity in electronic properties—with several organic semiconductors. The trend demonstrates that, despite the variance in their electronic properties, oxide energy alignment is governed by one driving force: electron-chemical-potential equilibration. Using a combination of simple thermodynamics, electrostatics and Fermi statistics we derive a mathematical relation that describes the alignment.
Metal oxides can exchange charges with a wide variety of adsorbed organic molecules, which renders them useful in electronics and catalysis. A study on oxides with a range of electronic properties now shows that energy alignment at metal oxide/organic interfaces is universally governed by electron-chemical-potential equilibration. |
doi_str_mv | 10.1038/nmat3159 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671461445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2587343731</sourcerecordid><originalsourceid>FETCH-LOGICAL-p202t-fd22f1ce0bf12ef733c4f623ad78382d2715bd4cf97cc9d5b9a427194f6b52d93</originalsourceid><addsrcrecordid>eNpd0N9LwzAQB_AgitMp-BdI8UkfqsklaZsHH2T4Cwa-uOeSNpfRkaazaYf7741sQ_ApR-7Dcfcl5IrRe0Z58eBbPXAm1RE5YyLPUpFl9HhfMwYwIechrCgFJmV2SiYAVOa8KM7I48I3G-yDdgl67Jfb1OEGXaJds_Qt-iHpbNJ2DuvRYUg6n7Q4RNx9NwbDBTmx2gW83L9Tsnh5_py9pfOP1_fZ0zxdA4UhtQbAshppZRmgzTmvhc2Aa5MXvAADOZOVEbVVeV0rIyulRfxTEVUSjOJTcrubu-67rxHDULZNqNE57bEbQ8mynImMCSEjvflHV93Y-7hdqeL5hYRCRHS9R2PVoinXfdPqflsecongbgdCbPkl9n9TGC1_My8PmfMfMGBw-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921585284</pqid></control><display><type>article</type><title>Universal energy-level alignment of molecules on metal oxides</title><source>Nature</source><source>SpringerNature Complete Journals</source><creator>Greiner, Mark T. ; Helander, Michael G. ; Tang, Wing-Man ; Wang, Zhi-Bin ; Qiu, Jacky ; Lu, Zheng-Hong</creator><creatorcontrib>Greiner, Mark T. ; Helander, Michael G. ; Tang, Wing-Man ; Wang, Zhi-Bin ; Qiu, Jacky ; Lu, Zheng-Hong</creatorcontrib><description>Transition-metal oxides improve power conversion efficiencies in organic photovoltaics and are used as low-resistance contacts in organic light-emitting diodes and organic thin-film transistors. What makes metal oxides useful in these technologies is the fact that their chemical and electronic properties can be tuned to enable charge exchange with a wide variety of organic molecules. Although it is known that charge exchange relies on the alignment of donor and acceptor energy levels, the mechanism for level alignment remains under debate. Here, we conclusively establish the principle of energy alignment between oxides and molecules. We observe a universal energy-alignment trend for a set of transition-metal oxides—representing a broad diversity in electronic properties—with several organic semiconductors. The trend demonstrates that, despite the variance in their electronic properties, oxide energy alignment is governed by one driving force: electron-chemical-potential equilibration. Using a combination of simple thermodynamics, electrostatics and Fermi statistics we derive a mathematical relation that describes the alignment.
Metal oxides can exchange charges with a wide variety of adsorbed organic molecules, which renders them useful in electronics and catalysis. A study on oxides with a range of electronic properties now shows that energy alignment at metal oxide/organic interfaces is universally governed by electron-chemical-potential equilibration.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat3159</identifier><identifier>PMID: 22057388</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/544 ; 639/301/119/995 ; 639/301/299 ; Acceptors (electronic) ; Alignment ; Biomaterials ; Charge exchange ; Chemistry and Materials Science ; Condensed Matter Physics ; Electronic properties ; Electronics ; Materials Science ; Metal oxides ; Metals ; Nanotechnology ; Optical and Electronic Materials ; Oxides ; Photovoltaics ; Thermodynamics ; Thin films ; Trends</subject><ispartof>Nature materials, 2012-01, Vol.11 (1), p.76-81</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Jan 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p202t-fd22f1ce0bf12ef733c4f623ad78382d2715bd4cf97cc9d5b9a427194f6b52d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat3159$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat3159$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22057388$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Greiner, Mark T.</creatorcontrib><creatorcontrib>Helander, Michael G.</creatorcontrib><creatorcontrib>Tang, Wing-Man</creatorcontrib><creatorcontrib>Wang, Zhi-Bin</creatorcontrib><creatorcontrib>Qiu, Jacky</creatorcontrib><creatorcontrib>Lu, Zheng-Hong</creatorcontrib><title>Universal energy-level alignment of molecules on metal oxides</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Transition-metal oxides improve power conversion efficiencies in organic photovoltaics and are used as low-resistance contacts in organic light-emitting diodes and organic thin-film transistors. What makes metal oxides useful in these technologies is the fact that their chemical and electronic properties can be tuned to enable charge exchange with a wide variety of organic molecules. Although it is known that charge exchange relies on the alignment of donor and acceptor energy levels, the mechanism for level alignment remains under debate. Here, we conclusively establish the principle of energy alignment between oxides and molecules. We observe a universal energy-alignment trend for a set of transition-metal oxides—representing a broad diversity in electronic properties—with several organic semiconductors. The trend demonstrates that, despite the variance in their electronic properties, oxide energy alignment is governed by one driving force: electron-chemical-potential equilibration. Using a combination of simple thermodynamics, electrostatics and Fermi statistics we derive a mathematical relation that describes the alignment.
Metal oxides can exchange charges with a wide variety of adsorbed organic molecules, which renders them useful in electronics and catalysis. A study on oxides with a range of electronic properties now shows that energy alignment at metal oxide/organic interfaces is universally governed by electron-chemical-potential equilibration.</description><subject>639/301/119/544</subject><subject>639/301/119/995</subject><subject>639/301/299</subject><subject>Acceptors (electronic)</subject><subject>Alignment</subject><subject>Biomaterials</subject><subject>Charge exchange</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electronic properties</subject><subject>Electronics</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Oxides</subject><subject>Photovoltaics</subject><subject>Thermodynamics</subject><subject>Thin films</subject><subject>Trends</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpd0N9LwzAQB_AgitMp-BdI8UkfqsklaZsHH2T4Cwa-uOeSNpfRkaazaYf7741sQ_ApR-7Dcfcl5IrRe0Z58eBbPXAm1RE5YyLPUpFl9HhfMwYwIechrCgFJmV2SiYAVOa8KM7I48I3G-yDdgl67Jfb1OEGXaJds_Qt-iHpbNJ2DuvRYUg6n7Q4RNx9NwbDBTmx2gW83L9Tsnh5_py9pfOP1_fZ0zxdA4UhtQbAshppZRmgzTmvhc2Aa5MXvAADOZOVEbVVeV0rIyulRfxTEVUSjOJTcrubu-67rxHDULZNqNE57bEbQ8mynImMCSEjvflHV93Y-7hdqeL5hYRCRHS9R2PVoinXfdPqflsecongbgdCbPkl9n9TGC1_My8PmfMfMGBw-A</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Greiner, Mark T.</creator><creator>Helander, Michael G.</creator><creator>Tang, Wing-Man</creator><creator>Wang, Zhi-Bin</creator><creator>Qiu, Jacky</creator><creator>Lu, Zheng-Hong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SU</scope><scope>7U5</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20120101</creationdate><title>Universal energy-level alignment of molecules on metal oxides</title><author>Greiner, Mark T. ; Helander, Michael G. ; Tang, Wing-Man ; Wang, Zhi-Bin ; Qiu, Jacky ; Lu, Zheng-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p202t-fd22f1ce0bf12ef733c4f623ad78382d2715bd4cf97cc9d5b9a427194f6b52d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/301/119/544</topic><topic>639/301/119/995</topic><topic>639/301/299</topic><topic>Acceptors (electronic)</topic><topic>Alignment</topic><topic>Biomaterials</topic><topic>Charge exchange</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electronic properties</topic><topic>Electronics</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Oxides</topic><topic>Photovoltaics</topic><topic>Thermodynamics</topic><topic>Thin films</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greiner, Mark T.</creatorcontrib><creatorcontrib>Helander, Michael G.</creatorcontrib><creatorcontrib>Tang, Wing-Man</creatorcontrib><creatorcontrib>Wang, Zhi-Bin</creatorcontrib><creatorcontrib>Qiu, Jacky</creatorcontrib><creatorcontrib>Lu, Zheng-Hong</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greiner, Mark T.</au><au>Helander, Michael G.</au><au>Tang, Wing-Man</au><au>Wang, Zhi-Bin</au><au>Qiu, Jacky</au><au>Lu, Zheng-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal energy-level alignment of molecules on metal oxides</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2012-01-01</date><risdate>2012</risdate><volume>11</volume><issue>1</issue><spage>76</spage><epage>81</epage><pages>76-81</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Transition-metal oxides improve power conversion efficiencies in organic photovoltaics and are used as low-resistance contacts in organic light-emitting diodes and organic thin-film transistors. What makes metal oxides useful in these technologies is the fact that their chemical and electronic properties can be tuned to enable charge exchange with a wide variety of organic molecules. Although it is known that charge exchange relies on the alignment of donor and acceptor energy levels, the mechanism for level alignment remains under debate. Here, we conclusively establish the principle of energy alignment between oxides and molecules. We observe a universal energy-alignment trend for a set of transition-metal oxides—representing a broad diversity in electronic properties—with several organic semiconductors. The trend demonstrates that, despite the variance in their electronic properties, oxide energy alignment is governed by one driving force: electron-chemical-potential equilibration. Using a combination of simple thermodynamics, electrostatics and Fermi statistics we derive a mathematical relation that describes the alignment.
Metal oxides can exchange charges with a wide variety of adsorbed organic molecules, which renders them useful in electronics and catalysis. A study on oxides with a range of electronic properties now shows that energy alignment at metal oxide/organic interfaces is universally governed by electron-chemical-potential equilibration.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22057388</pmid><doi>10.1038/nmat3159</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2012-01, Vol.11 (1), p.76-81 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671461445 |
source | Nature; SpringerNature Complete Journals |
subjects | 639/301/119/544 639/301/119/995 639/301/299 Acceptors (electronic) Alignment Biomaterials Charge exchange Chemistry and Materials Science Condensed Matter Physics Electronic properties Electronics Materials Science Metal oxides Metals Nanotechnology Optical and Electronic Materials Oxides Photovoltaics Thermodynamics Thin films Trends |
title | Universal energy-level alignment of molecules on metal oxides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T11%3A03%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20energy-level%20alignment%20of%20molecules%20on%20metal%20oxides&rft.jtitle=Nature%20materials&rft.au=Greiner,%20Mark%20T.&rft.date=2012-01-01&rft.volume=11&rft.issue=1&rft.spage=76&rft.epage=81&rft.pages=76-81&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat3159&rft_dat=%3Cproquest_pubme%3E2587343731%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921585284&rft_id=info:pmid/22057388&rfr_iscdi=true |