Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations
The nine-point scheme (NPS) is a finite volume scheme for solving nonlinear diffusion equations on quadrilateral grids. It’s well-known that the solution of the scheme on distorted grids cannot preserve positivity when all given data are nonnegative. Here for the NPS of nonlinear diffusion problems...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2012-06, Vol.223-224, p.161-172 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 172 |
---|---|
container_issue | |
container_start_page | 161 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 223-224 |
creator | Yao, Yanzhong Yuan, Guangwei |
description | The nine-point scheme (NPS) is a finite volume scheme for solving nonlinear diffusion equations on quadrilateral grids. It’s well-known that the solution of the scheme on distorted grids cannot preserve positivity when all given data are nonnegative. Here for the NPS of nonlinear diffusion problems we propose a conservative enforcing positivity algorithm (CEPA), which is posterior correction of the discrete solution, and allows the new solution preserves positivity as well as local conservation at each step of nonlinear iteration. Numerical results are presented to demonstrate that the accuracy of our algorithm of enforcing positivity with conservation is higher than some common procedures of positivity correction. |
doi_str_mv | 10.1016/j.cma.2012.03.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671460747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782512000680</els_id><sourcerecordid>1671460747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-87e7647844a9c4ac83d31ea713a30392151eace4e66e637f34abddde7853f2783</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-gLdcBC-75ms3WTyJ-AWCFz1KiNmJTdkmNdlW-u9NbfGocxlmeN4ZeBA6o6SmhLaXs9rOTc0IZTXhNSF0D02okl3FKFf7aEKIaCqpWHOIjnKekVKKsgl6uw0uJuvDB17E7Ee_8uMaf_lxim0MGdLKjD4GXCAcfIBqEX0YcbZTmAOODocYhrI3CffeuWXewPC5_EnlE3TgzJDhdNeP0evd7cvNQ_X0fP94c_1UWd7xsVISZCukEsJ0VhireM8pGEm54YR3jDZlsiCgbaHl0nFh3vu-B6ka7phU_BhdbO8uUvxcQh713GcLw2ACxGXWtJVUtEQK-T9KGOsIFV1bULpFbYo5J3B6kfzcpHWB9Ma6nuliXW-sa8J1sV4y57vzJlszuGSC9fk3yBrFhZAb7mrLQdGy8pB0th6Chd4nsKPuo__jyzdgC5gL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022901496</pqid></control><display><type>article</type><title>Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations</title><source>Elsevier ScienceDirect Journals</source><creator>Yao, Yanzhong ; Yuan, Guangwei</creator><creatorcontrib>Yao, Yanzhong ; Yuan, Guangwei</creatorcontrib><description>The nine-point scheme (NPS) is a finite volume scheme for solving nonlinear diffusion equations on quadrilateral grids. It’s well-known that the solution of the scheme on distorted grids cannot preserve positivity when all given data are nonnegative. Here for the NPS of nonlinear diffusion problems we propose a conservative enforcing positivity algorithm (CEPA), which is posterior correction of the discrete solution, and allows the new solution preserves positivity as well as local conservation at each step of nonlinear iteration. Numerical results are presented to demonstrate that the accuracy of our algorithm of enforcing positivity with conservation is higher than some common procedures of positivity correction.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2012.03.001</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algorithms ; Arbitrary quadrilateral grids ; Conservation ; Diffusion ; Distortion ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Mathematics ; Nonlinear diffusion equation ; Nonlinearity ; Partial differential equations ; Positivity correction ; Preserves ; Sciences and techniques of general use</subject><ispartof>Computer methods in applied mechanics and engineering, 2012-06, Vol.223-224, p.161-172</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-87e7647844a9c4ac83d31ea713a30392151eace4e66e637f34abddde7853f2783</citedby><cites>FETCH-LOGICAL-c393t-87e7647844a9c4ac83d31ea713a30392151eace4e66e637f34abddde7853f2783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782512000680$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25834471$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Yanzhong</creatorcontrib><creatorcontrib>Yuan, Guangwei</creatorcontrib><title>Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations</title><title>Computer methods in applied mechanics and engineering</title><description>The nine-point scheme (NPS) is a finite volume scheme for solving nonlinear diffusion equations on quadrilateral grids. It’s well-known that the solution of the scheme on distorted grids cannot preserve positivity when all given data are nonnegative. Here for the NPS of nonlinear diffusion problems we propose a conservative enforcing positivity algorithm (CEPA), which is posterior correction of the discrete solution, and allows the new solution preserves positivity as well as local conservation at each step of nonlinear iteration. Numerical results are presented to demonstrate that the accuracy of our algorithm of enforcing positivity with conservation is higher than some common procedures of positivity correction.</description><subject>Algorithms</subject><subject>Arbitrary quadrilateral grids</subject><subject>Conservation</subject><subject>Diffusion</subject><subject>Distortion</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nonlinear diffusion equation</subject><subject>Nonlinearity</subject><subject>Partial differential equations</subject><subject>Positivity correction</subject><subject>Preserves</subject><subject>Sciences and techniques of general use</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-gLdcBC-75ms3WTyJ-AWCFz1KiNmJTdkmNdlW-u9NbfGocxlmeN4ZeBA6o6SmhLaXs9rOTc0IZTXhNSF0D02okl3FKFf7aEKIaCqpWHOIjnKekVKKsgl6uw0uJuvDB17E7Ee_8uMaf_lxim0MGdLKjD4GXCAcfIBqEX0YcbZTmAOODocYhrI3CffeuWXewPC5_EnlE3TgzJDhdNeP0evd7cvNQ_X0fP94c_1UWd7xsVISZCukEsJ0VhireM8pGEm54YR3jDZlsiCgbaHl0nFh3vu-B6ka7phU_BhdbO8uUvxcQh713GcLw2ACxGXWtJVUtEQK-T9KGOsIFV1bULpFbYo5J3B6kfzcpHWB9Ma6nuliXW-sa8J1sV4y57vzJlszuGSC9fk3yBrFhZAb7mrLQdGy8pB0th6Chd4nsKPuo__jyzdgC5gL</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Yao, Yanzhong</creator><creator>Yuan, Guangwei</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120601</creationdate><title>Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations</title><author>Yao, Yanzhong ; Yuan, Guangwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-87e7647844a9c4ac83d31ea713a30392151eace4e66e637f34abddde7853f2783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Arbitrary quadrilateral grids</topic><topic>Conservation</topic><topic>Diffusion</topic><topic>Distortion</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nonlinear diffusion equation</topic><topic>Nonlinearity</topic><topic>Partial differential equations</topic><topic>Positivity correction</topic><topic>Preserves</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Yanzhong</creatorcontrib><creatorcontrib>Yuan, Guangwei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Yanzhong</au><au>Yuan, Guangwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>223-224</volume><spage>161</spage><epage>172</epage><pages>161-172</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>The nine-point scheme (NPS) is a finite volume scheme for solving nonlinear diffusion equations on quadrilateral grids. It’s well-known that the solution of the scheme on distorted grids cannot preserve positivity when all given data are nonnegative. Here for the NPS of nonlinear diffusion problems we propose a conservative enforcing positivity algorithm (CEPA), which is posterior correction of the discrete solution, and allows the new solution preserves positivity as well as local conservation at each step of nonlinear iteration. Numerical results are presented to demonstrate that the accuracy of our algorithm of enforcing positivity with conservation is higher than some common procedures of positivity correction.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2012.03.001</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2012-06, Vol.223-224, p.161-172 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671460747 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Arbitrary quadrilateral grids Conservation Diffusion Distortion Exact sciences and technology Mathematical analysis Mathematical models Mathematics Nonlinear diffusion equation Nonlinearity Partial differential equations Positivity correction Preserves Sciences and techniques of general use |
title | Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enforcing%20positivity%20with%20conservation%20for%20nine-point%20scheme%20of%20nonlinear%20diffusion%20equations&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Yao,%20Yanzhong&rft.date=2012-06-01&rft.volume=223-224&rft.spage=161&rft.epage=172&rft.pages=161-172&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2012.03.001&rft_dat=%3Cproquest_cross%3E1671460747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022901496&rft_id=info:pmid/&rft_els_id=S0045782512000680&rfr_iscdi=true |