Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations

The nine-point scheme (NPS) is a finite volume scheme for solving nonlinear diffusion equations on quadrilateral grids. It’s well-known that the solution of the scheme on distorted grids cannot preserve positivity when all given data are nonnegative. Here for the NPS of nonlinear diffusion problems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2012-06, Vol.223-224, p.161-172
Hauptverfasser: Yao, Yanzhong, Yuan, Guangwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 172
container_issue
container_start_page 161
container_title Computer methods in applied mechanics and engineering
container_volume 223-224
creator Yao, Yanzhong
Yuan, Guangwei
description The nine-point scheme (NPS) is a finite volume scheme for solving nonlinear diffusion equations on quadrilateral grids. It’s well-known that the solution of the scheme on distorted grids cannot preserve positivity when all given data are nonnegative. Here for the NPS of nonlinear diffusion problems we propose a conservative enforcing positivity algorithm (CEPA), which is posterior correction of the discrete solution, and allows the new solution preserves positivity as well as local conservation at each step of nonlinear iteration. Numerical results are presented to demonstrate that the accuracy of our algorithm of enforcing positivity with conservation is higher than some common procedures of positivity correction.
doi_str_mv 10.1016/j.cma.2012.03.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671460747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782512000680</els_id><sourcerecordid>1671460747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-87e7647844a9c4ac83d31ea713a30392151eace4e66e637f34abddde7853f2783</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-gLdcBC-75ms3WTyJ-AWCFz1KiNmJTdkmNdlW-u9NbfGocxlmeN4ZeBA6o6SmhLaXs9rOTc0IZTXhNSF0D02okl3FKFf7aEKIaCqpWHOIjnKekVKKsgl6uw0uJuvDB17E7Ee_8uMaf_lxim0MGdLKjD4GXCAcfIBqEX0YcbZTmAOODocYhrI3CffeuWXewPC5_EnlE3TgzJDhdNeP0evd7cvNQ_X0fP94c_1UWd7xsVISZCukEsJ0VhireM8pGEm54YR3jDZlsiCgbaHl0nFh3vu-B6ka7phU_BhdbO8uUvxcQh713GcLw2ACxGXWtJVUtEQK-T9KGOsIFV1bULpFbYo5J3B6kfzcpHWB9Ma6nuliXW-sa8J1sV4y57vzJlszuGSC9fk3yBrFhZAb7mrLQdGy8pB0th6Chd4nsKPuo__jyzdgC5gL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022901496</pqid></control><display><type>article</type><title>Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations</title><source>Elsevier ScienceDirect Journals</source><creator>Yao, Yanzhong ; Yuan, Guangwei</creator><creatorcontrib>Yao, Yanzhong ; Yuan, Guangwei</creatorcontrib><description>The nine-point scheme (NPS) is a finite volume scheme for solving nonlinear diffusion equations on quadrilateral grids. It’s well-known that the solution of the scheme on distorted grids cannot preserve positivity when all given data are nonnegative. Here for the NPS of nonlinear diffusion problems we propose a conservative enforcing positivity algorithm (CEPA), which is posterior correction of the discrete solution, and allows the new solution preserves positivity as well as local conservation at each step of nonlinear iteration. Numerical results are presented to demonstrate that the accuracy of our algorithm of enforcing positivity with conservation is higher than some common procedures of positivity correction.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2012.03.001</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Algorithms ; Arbitrary quadrilateral grids ; Conservation ; Diffusion ; Distortion ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Mathematics ; Nonlinear diffusion equation ; Nonlinearity ; Partial differential equations ; Positivity correction ; Preserves ; Sciences and techniques of general use</subject><ispartof>Computer methods in applied mechanics and engineering, 2012-06, Vol.223-224, p.161-172</ispartof><rights>2012 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-87e7647844a9c4ac83d31ea713a30392151eace4e66e637f34abddde7853f2783</citedby><cites>FETCH-LOGICAL-c393t-87e7647844a9c4ac83d31ea713a30392151eace4e66e637f34abddde7853f2783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782512000680$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25834471$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Yanzhong</creatorcontrib><creatorcontrib>Yuan, Guangwei</creatorcontrib><title>Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations</title><title>Computer methods in applied mechanics and engineering</title><description>The nine-point scheme (NPS) is a finite volume scheme for solving nonlinear diffusion equations on quadrilateral grids. It’s well-known that the solution of the scheme on distorted grids cannot preserve positivity when all given data are nonnegative. Here for the NPS of nonlinear diffusion problems we propose a conservative enforcing positivity algorithm (CEPA), which is posterior correction of the discrete solution, and allows the new solution preserves positivity as well as local conservation at each step of nonlinear iteration. Numerical results are presented to demonstrate that the accuracy of our algorithm of enforcing positivity with conservation is higher than some common procedures of positivity correction.</description><subject>Algorithms</subject><subject>Arbitrary quadrilateral grids</subject><subject>Conservation</subject><subject>Diffusion</subject><subject>Distortion</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nonlinear diffusion equation</subject><subject>Nonlinearity</subject><subject>Partial differential equations</subject><subject>Positivity correction</subject><subject>Preserves</subject><subject>Sciences and techniques of general use</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-gLdcBC-75ms3WTyJ-AWCFz1KiNmJTdkmNdlW-u9NbfGocxlmeN4ZeBA6o6SmhLaXs9rOTc0IZTXhNSF0D02okl3FKFf7aEKIaCqpWHOIjnKekVKKsgl6uw0uJuvDB17E7Ee_8uMaf_lxim0MGdLKjD4GXCAcfIBqEX0YcbZTmAOODocYhrI3CffeuWXewPC5_EnlE3TgzJDhdNeP0evd7cvNQ_X0fP94c_1UWd7xsVISZCukEsJ0VhireM8pGEm54YR3jDZlsiCgbaHl0nFh3vu-B6ka7phU_BhdbO8uUvxcQh713GcLw2ACxGXWtJVUtEQK-T9KGOsIFV1bULpFbYo5J3B6kfzcpHWB9Ma6nuliXW-sa8J1sV4y57vzJlszuGSC9fk3yBrFhZAb7mrLQdGy8pB0th6Chd4nsKPuo__jyzdgC5gL</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Yao, Yanzhong</creator><creator>Yuan, Guangwei</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120601</creationdate><title>Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations</title><author>Yao, Yanzhong ; Yuan, Guangwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-87e7647844a9c4ac83d31ea713a30392151eace4e66e637f34abddde7853f2783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Arbitrary quadrilateral grids</topic><topic>Conservation</topic><topic>Diffusion</topic><topic>Distortion</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nonlinear diffusion equation</topic><topic>Nonlinearity</topic><topic>Partial differential equations</topic><topic>Positivity correction</topic><topic>Preserves</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Yanzhong</creatorcontrib><creatorcontrib>Yuan, Guangwei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Yanzhong</au><au>Yuan, Guangwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2012-06-01</date><risdate>2012</risdate><volume>223-224</volume><spage>161</spage><epage>172</epage><pages>161-172</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>The nine-point scheme (NPS) is a finite volume scheme for solving nonlinear diffusion equations on quadrilateral grids. It’s well-known that the solution of the scheme on distorted grids cannot preserve positivity when all given data are nonnegative. Here for the NPS of nonlinear diffusion problems we propose a conservative enforcing positivity algorithm (CEPA), which is posterior correction of the discrete solution, and allows the new solution preserves positivity as well as local conservation at each step of nonlinear iteration. Numerical results are presented to demonstrate that the accuracy of our algorithm of enforcing positivity with conservation is higher than some common procedures of positivity correction.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2012.03.001</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2012-06, Vol.223-224, p.161-172
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_1671460747
source Elsevier ScienceDirect Journals
subjects Algorithms
Arbitrary quadrilateral grids
Conservation
Diffusion
Distortion
Exact sciences and technology
Mathematical analysis
Mathematical models
Mathematics
Nonlinear diffusion equation
Nonlinearity
Partial differential equations
Positivity correction
Preserves
Sciences and techniques of general use
title Enforcing positivity with conservation for nine-point scheme of nonlinear diffusion equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enforcing%20positivity%20with%20conservation%20for%20nine-point%20scheme%20of%20nonlinear%20diffusion%20equations&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Yao,%20Yanzhong&rft.date=2012-06-01&rft.volume=223-224&rft.spage=161&rft.epage=172&rft.pages=161-172&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2012.03.001&rft_dat=%3Cproquest_cross%3E1671460747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022901496&rft_id=info:pmid/&rft_els_id=S0045782512000680&rfr_iscdi=true