Nonlinear Shape-Texture Manifold Learning
For improving the nonlinear alignment performance of Active Appearance Models (AAM), we apply a variant of the nonlinear manifold learning algorithm, Local Linear Embedded, to model shape-texture manifold. Experiments show that our method maintains a lower alignment residual to some small scale move...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2010/07/01, Vol.E93.D(7), pp.2016-2019 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For improving the nonlinear alignment performance of Active Appearance Models (AAM), we apply a variant of the nonlinear manifold learning algorithm, Local Linear Embedded, to model shape-texture manifold. Experiments show that our method maintains a lower alignment residual to some small scale movements compared with traditional AAM based on Principal Component Analysis (PCA) and makes a successful alignment to large scale motions when PCA-AAM failed. |
---|---|
ISSN: | 0916-8532 1745-1361 1745-1361 |
DOI: | 10.1587/transinf.E93.D.2016 |