Multi-Scale Modeling of Fission Gas Evolution in UO2

Fission gases in uranium dioxide (UO2) nuclear fuels, of which Xe is one of the most prominent, influence fuel performance during reactor operation and have implications for accident scenarios. Their behavior, including the nucleation and growth of fission gas bubbles, is a multiscale problem. We us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP conference proceedings 2012-03
Hauptverfasser: Uberuaga, Blas, Andersson, David, Liu, Xiang-Yang, Nerikar, Pankaj, Stanek, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title AIP conference proceedings
container_volume
creator Uberuaga, Blas
Andersson, David
Liu, Xiang-Yang
Nerikar, Pankaj
Stanek, Christopher
description Fission gases in uranium dioxide (UO2) nuclear fuels, of which Xe is one of the most prominent, influence fuel performance during reactor operation and have implications for accident scenarios. Their behavior, including the nucleation and growth of fission gas bubbles, is a multiscale problem. We use a multiscale modeling approach to understand the behavior of Xe in UO2 as a function of microstructure by considering the effect of different types of grain boundaries on the evolution of Xe. Using density functional theory we calculate the activation energies for Xe diffusion in UO2 plus or minus x and we determine the interaction of Xe with different types of grain boundaries in UO2 using molecular statics. These results are then input into amesoscale model that predicts the evolution of Xe as a function of microstructure containing different distributions of grain boundaries. We find that the evolution of Xe depends significantly on the microstructure.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671455991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671455991</sourcerecordid><originalsourceid>FETCH-LOGICAL-p661-d6736aa49bf426aa4d1a02b136b3c0afa9831f1f6e6717861e2d10f1798088ee3</originalsourceid><addsrcrecordid>eNqFjMFOAjEURbvARAT_oUs3Tfra8touDQE0gbAQE3akM_NqasoU7Yzfr0T3ru49yT13wqZSeiOU0cdbdlfru5TKW-umzOzGPCTx0oZMfFc6yql_4yXydao1lZ5vQuWrr5LH4Uqp5697NWc3MeRK9385Y4f16rB8Etv95nn5uBUXRBAdWo0hGN9Eo66lgyBVAxob3coQg3caIkQktGAdAqkOZATrnXSOSM_Yw-_t5bN8jFSH0znVlnIOPZWxnuDHM4uF9_D_VFuF0imF-hvLK03_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372608226</pqid></control><display><type>article</type><title>Multi-Scale Modeling of Fission Gas Evolution in UO2</title><source>AIP Journals Complete</source><creator>Uberuaga, Blas ; Andersson, David ; Liu, Xiang-Yang ; Nerikar, Pankaj ; Stanek, Christopher</creator><creatorcontrib>Uberuaga, Blas ; Andersson, David ; Liu, Xiang-Yang ; Nerikar, Pankaj ; Stanek, Christopher</creatorcontrib><description>Fission gases in uranium dioxide (UO2) nuclear fuels, of which Xe is one of the most prominent, influence fuel performance during reactor operation and have implications for accident scenarios. Their behavior, including the nucleation and growth of fission gas bubbles, is a multiscale problem. We use a multiscale modeling approach to understand the behavior of Xe in UO2 as a function of microstructure by considering the effect of different types of grain boundaries on the evolution of Xe. Using density functional theory we calculate the activation energies for Xe diffusion in UO2 plus or minus x and we determine the interaction of Xe with different types of grain boundaries in UO2 using molecular statics. These results are then input into amesoscale model that predicts the evolution of Xe as a function of microstructure containing different distributions of grain boundaries. We find that the evolution of Xe depends significantly on the microstructure.</description><identifier>ISSN: 0094-243X</identifier><language>eng</language><subject>Evolution ; Grain boundaries ; Mathematical models ; Microstructure ; Nuclear fission ; Nuclear power generation ; Nuclear reactor components ; Nucleation</subject><ispartof>AIP conference proceedings, 2012-03</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Uberuaga, Blas</creatorcontrib><creatorcontrib>Andersson, David</creatorcontrib><creatorcontrib>Liu, Xiang-Yang</creatorcontrib><creatorcontrib>Nerikar, Pankaj</creatorcontrib><creatorcontrib>Stanek, Christopher</creatorcontrib><title>Multi-Scale Modeling of Fission Gas Evolution in UO2</title><title>AIP conference proceedings</title><description>Fission gases in uranium dioxide (UO2) nuclear fuels, of which Xe is one of the most prominent, influence fuel performance during reactor operation and have implications for accident scenarios. Their behavior, including the nucleation and growth of fission gas bubbles, is a multiscale problem. We use a multiscale modeling approach to understand the behavior of Xe in UO2 as a function of microstructure by considering the effect of different types of grain boundaries on the evolution of Xe. Using density functional theory we calculate the activation energies for Xe diffusion in UO2 plus or minus x and we determine the interaction of Xe with different types of grain boundaries in UO2 using molecular statics. These results are then input into amesoscale model that predicts the evolution of Xe as a function of microstructure containing different distributions of grain boundaries. We find that the evolution of Xe depends significantly on the microstructure.</description><subject>Evolution</subject><subject>Grain boundaries</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Nuclear fission</subject><subject>Nuclear power generation</subject><subject>Nuclear reactor components</subject><subject>Nucleation</subject><issn>0094-243X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFjMFOAjEURbvARAT_oUs3Tfra8touDQE0gbAQE3akM_NqasoU7Yzfr0T3ru49yT13wqZSeiOU0cdbdlfru5TKW-umzOzGPCTx0oZMfFc6yql_4yXydao1lZ5vQuWrr5LH4Uqp5697NWc3MeRK9385Y4f16rB8Etv95nn5uBUXRBAdWo0hGN9Eo66lgyBVAxob3coQg3caIkQktGAdAqkOZATrnXSOSM_Yw-_t5bN8jFSH0znVlnIOPZWxnuDHM4uF9_D_VFuF0imF-hvLK03_</recordid><startdate>20120315</startdate><enddate>20120315</enddate><creator>Uberuaga, Blas</creator><creator>Andersson, David</creator><creator>Liu, Xiang-Yang</creator><creator>Nerikar, Pankaj</creator><creator>Stanek, Christopher</creator><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20120315</creationdate><title>Multi-Scale Modeling of Fission Gas Evolution in UO2</title><author>Uberuaga, Blas ; Andersson, David ; Liu, Xiang-Yang ; Nerikar, Pankaj ; Stanek, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p661-d6736aa49bf426aa4d1a02b136b3c0afa9831f1f6e6717861e2d10f1798088ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Evolution</topic><topic>Grain boundaries</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Nuclear fission</topic><topic>Nuclear power generation</topic><topic>Nuclear reactor components</topic><topic>Nucleation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uberuaga, Blas</creatorcontrib><creatorcontrib>Andersson, David</creatorcontrib><creatorcontrib>Liu, Xiang-Yang</creatorcontrib><creatorcontrib>Nerikar, Pankaj</creatorcontrib><creatorcontrib>Stanek, Christopher</creatorcontrib><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIP conference proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uberuaga, Blas</au><au>Andersson, David</au><au>Liu, Xiang-Yang</au><au>Nerikar, Pankaj</au><au>Stanek, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Scale Modeling of Fission Gas Evolution in UO2</atitle><jtitle>AIP conference proceedings</jtitle><date>2012-03-15</date><risdate>2012</risdate><issn>0094-243X</issn><abstract>Fission gases in uranium dioxide (UO2) nuclear fuels, of which Xe is one of the most prominent, influence fuel performance during reactor operation and have implications for accident scenarios. Their behavior, including the nucleation and growth of fission gas bubbles, is a multiscale problem. We use a multiscale modeling approach to understand the behavior of Xe in UO2 as a function of microstructure by considering the effect of different types of grain boundaries on the evolution of Xe. Using density functional theory we calculate the activation energies for Xe diffusion in UO2 plus or minus x and we determine the interaction of Xe with different types of grain boundaries in UO2 using molecular statics. These results are then input into amesoscale model that predicts the evolution of Xe as a function of microstructure containing different distributions of grain boundaries. We find that the evolution of Xe depends significantly on the microstructure.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2012-03
issn 0094-243X
language eng
recordid cdi_proquest_miscellaneous_1671455991
source AIP Journals Complete
subjects Evolution
Grain boundaries
Mathematical models
Microstructure
Nuclear fission
Nuclear power generation
Nuclear reactor components
Nucleation
title Multi-Scale Modeling of Fission Gas Evolution in UO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Scale%20Modeling%20of%20Fission%20Gas%20Evolution%20in%20UO2&rft.jtitle=AIP%20conference%20proceedings&rft.au=Uberuaga,%20Blas&rft.date=2012-03-15&rft.issn=0094-243X&rft_id=info:doi/&rft_dat=%3Cproquest%3E1671455991%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1372608226&rft_id=info:pmid/&rfr_iscdi=true