A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows

In Xu (2013) [14], a class of parametrized flux limiters is developed for high order finite difference/volume essentially non-oscillatory (ENO) and Weighted ENO (WENO) schemes coupled with total variation diminishing (TVD) Runge–Kutta (RK) temporal integration for solving scalar hyperbolic conservat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2013-11, Vol.252, p.310-331
Hauptverfasser: Xiong, Tao, Qiu, Jing-Mei, Xu, Zhengfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 331
container_issue
container_start_page 310
container_title Journal of computational physics
container_volume 252
creator Xiong, Tao
Qiu, Jing-Mei
Xu, Zhengfu
description In Xu (2013) [14], a class of parametrized flux limiters is developed for high order finite difference/volume essentially non-oscillatory (ENO) and Weighted ENO (WENO) schemes coupled with total variation diminishing (TVD) Runge–Kutta (RK) temporal integration for solving scalar hyperbolic conservation laws to achieve strict maximum principle preserving (MPP). In this paper, we continue along this line of research, but propose to apply the parametrized MPP flux limiter only to the final stage of any explicit RK method. Compared with the original work (Xu, 2013) [14], the proposed new approach has several advantages: First, the MPP property is preserved with high order accuracy without as much time step restriction; Second, the implementation of the parametrized flux limiters is significantly simplified. Analysis is performed to justify the maintenance of third order spatial/temporal accuracy when the MPP flux limiters are applied to third order finite difference schemes solving general nonlinear problems. We further apply the limiting procedure to the simulation of the incompressible flow: the numerical fluxes of a high order scheme are limited toward that of a first order MPP scheme which was discussed in Levy (2005) [3]. The MPP property is guaranteed, while designed high order of spatial and temporal accuracy for the incompressible flow computation is not affected via extensive numerical experiments. The efficiency and effectiveness of the proposed scheme are demonstrated via several test examples.
doi_str_mv 10.1016/j.jcp.2013.06.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671455283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999113004567</els_id><sourcerecordid>1671455283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7e17a19cdc5498c5157d428fd806676d1edff2bb435135d4fa0f83c9e15fc8613</originalsourceid><addsrcrecordid>eNqFUctu1TAQtRBIXAofwM5LNgmexHYSsaqq8lArKiEQS8vXHtO5ipNg57aFL-Cz6-iyBmlGcxbnzOsw9hpEDQL020N9cEvdCGhroWvR6CdsB2IQVdOBfsp2QjRQDcMAz9mLnA9CiF7Jfsf-nPPFJhtxTfQbPY_2geIx8iXR5GgZsSDMmO5o-sHDeHzgI0VaMfEwl6SpYO4pBEw4OeRfrqrvl59veHa3GDHze1pvuV2WkZxdaZ4yp6mEm-PWN9O-TAjjfJ9fsmfBjhlf_a1n7Nv7y68XH6vrmw-fLs6vK9fqdq06hM7C4LxTcuidAtV52fTB90LrTntAH0Kz38tWQau8DFaEvnUDggqu19CesTenvkuafx4xryZSdjiOdsL5mA3oDqRSTd_-nyq1VHLbo1DhRHVpzjlhMOWB0aZfBoTZDDIHUwwym0FGaFMMKpp3Jw2Wc-8Ik8mOtid6SuhW42f6h_oRy92bXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464545498</pqid></control><display><type>article</type><title>A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows</title><source>Elsevier ScienceDirect Journals</source><creator>Xiong, Tao ; Qiu, Jing-Mei ; Xu, Zhengfu</creator><creatorcontrib>Xiong, Tao ; Qiu, Jing-Mei ; Xu, Zhengfu</creatorcontrib><description>In Xu (2013) [14], a class of parametrized flux limiters is developed for high order finite difference/volume essentially non-oscillatory (ENO) and Weighted ENO (WENO) schemes coupled with total variation diminishing (TVD) Runge–Kutta (RK) temporal integration for solving scalar hyperbolic conservation laws to achieve strict maximum principle preserving (MPP). In this paper, we continue along this line of research, but propose to apply the parametrized MPP flux limiter only to the final stage of any explicit RK method. Compared with the original work (Xu, 2013) [14], the proposed new approach has several advantages: First, the MPP property is preserved with high order accuracy without as much time step restriction; Second, the implementation of the parametrized flux limiters is significantly simplified. Analysis is performed to justify the maintenance of third order spatial/temporal accuracy when the MPP flux limiters are applied to third order finite difference schemes solving general nonlinear problems. We further apply the limiting procedure to the simulation of the incompressible flow: the numerical fluxes of a high order scheme are limited toward that of a first order MPP scheme which was discussed in Levy (2005) [3]. The MPP property is guaranteed, while designed high order of spatial and temporal accuracy for the incompressible flow computation is not affected via extensive numerical experiments. The efficiency and effectiveness of the proposed scheme are demonstrated via several test examples.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2013.06.026</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Accuracy ; Computational fluid dynamics ; Fluid flow ; Flux ; High order scheme ; Hyperbolic conservation laws ; Incompressible flow ; Mathematical analysis ; Maximum principle preserving ; Parametrized flux limiter ; Preserving ; Runge–Kutta method ; Temporal logic ; WENO</subject><ispartof>Journal of computational physics, 2013-11, Vol.252, p.310-331</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7e17a19cdc5498c5157d428fd806676d1edff2bb435135d4fa0f83c9e15fc8613</citedby><cites>FETCH-LOGICAL-c363t-7e17a19cdc5498c5157d428fd806676d1edff2bb435135d4fa0f83c9e15fc8613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999113004567$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Xiong, Tao</creatorcontrib><creatorcontrib>Qiu, Jing-Mei</creatorcontrib><creatorcontrib>Xu, Zhengfu</creatorcontrib><title>A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows</title><title>Journal of computational physics</title><description>In Xu (2013) [14], a class of parametrized flux limiters is developed for high order finite difference/volume essentially non-oscillatory (ENO) and Weighted ENO (WENO) schemes coupled with total variation diminishing (TVD) Runge–Kutta (RK) temporal integration for solving scalar hyperbolic conservation laws to achieve strict maximum principle preserving (MPP). In this paper, we continue along this line of research, but propose to apply the parametrized MPP flux limiter only to the final stage of any explicit RK method. Compared with the original work (Xu, 2013) [14], the proposed new approach has several advantages: First, the MPP property is preserved with high order accuracy without as much time step restriction; Second, the implementation of the parametrized flux limiters is significantly simplified. Analysis is performed to justify the maintenance of third order spatial/temporal accuracy when the MPP flux limiters are applied to third order finite difference schemes solving general nonlinear problems. We further apply the limiting procedure to the simulation of the incompressible flow: the numerical fluxes of a high order scheme are limited toward that of a first order MPP scheme which was discussed in Levy (2005) [3]. The MPP property is guaranteed, while designed high order of spatial and temporal accuracy for the incompressible flow computation is not affected via extensive numerical experiments. The efficiency and effectiveness of the proposed scheme are demonstrated via several test examples.</description><subject>Accuracy</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Flux</subject><subject>High order scheme</subject><subject>Hyperbolic conservation laws</subject><subject>Incompressible flow</subject><subject>Mathematical analysis</subject><subject>Maximum principle preserving</subject><subject>Parametrized flux limiter</subject><subject>Preserving</subject><subject>Runge–Kutta method</subject><subject>Temporal logic</subject><subject>WENO</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUctu1TAQtRBIXAofwM5LNgmexHYSsaqq8lArKiEQS8vXHtO5ipNg57aFL-Cz6-iyBmlGcxbnzOsw9hpEDQL020N9cEvdCGhroWvR6CdsB2IQVdOBfsp2QjRQDcMAz9mLnA9CiF7Jfsf-nPPFJhtxTfQbPY_2geIx8iXR5GgZsSDMmO5o-sHDeHzgI0VaMfEwl6SpYO4pBEw4OeRfrqrvl59veHa3GDHze1pvuV2WkZxdaZ4yp6mEm-PWN9O-TAjjfJ9fsmfBjhlf_a1n7Nv7y68XH6vrmw-fLs6vK9fqdq06hM7C4LxTcuidAtV52fTB90LrTntAH0Kz38tWQau8DFaEvnUDggqu19CesTenvkuafx4xryZSdjiOdsL5mA3oDqRSTd_-nyq1VHLbo1DhRHVpzjlhMOWB0aZfBoTZDDIHUwwym0FGaFMMKpp3Jw2Wc-8Ik8mOtid6SuhW42f6h_oRy92bXQ</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Xiong, Tao</creator><creator>Qiu, Jing-Mei</creator><creator>Xu, Zhengfu</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131101</creationdate><title>A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows</title><author>Xiong, Tao ; Qiu, Jing-Mei ; Xu, Zhengfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7e17a19cdc5498c5157d428fd806676d1edff2bb435135d4fa0f83c9e15fc8613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Flux</topic><topic>High order scheme</topic><topic>Hyperbolic conservation laws</topic><topic>Incompressible flow</topic><topic>Mathematical analysis</topic><topic>Maximum principle preserving</topic><topic>Parametrized flux limiter</topic><topic>Preserving</topic><topic>Runge–Kutta method</topic><topic>Temporal logic</topic><topic>WENO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Tao</creatorcontrib><creatorcontrib>Qiu, Jing-Mei</creatorcontrib><creatorcontrib>Xu, Zhengfu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Tao</au><au>Qiu, Jing-Mei</au><au>Xu, Zhengfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows</atitle><jtitle>Journal of computational physics</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>252</volume><spage>310</spage><epage>331</epage><pages>310-331</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In Xu (2013) [14], a class of parametrized flux limiters is developed for high order finite difference/volume essentially non-oscillatory (ENO) and Weighted ENO (WENO) schemes coupled with total variation diminishing (TVD) Runge–Kutta (RK) temporal integration for solving scalar hyperbolic conservation laws to achieve strict maximum principle preserving (MPP). In this paper, we continue along this line of research, but propose to apply the parametrized MPP flux limiter only to the final stage of any explicit RK method. Compared with the original work (Xu, 2013) [14], the proposed new approach has several advantages: First, the MPP property is preserved with high order accuracy without as much time step restriction; Second, the implementation of the parametrized flux limiters is significantly simplified. Analysis is performed to justify the maintenance of third order spatial/temporal accuracy when the MPP flux limiters are applied to third order finite difference schemes solving general nonlinear problems. We further apply the limiting procedure to the simulation of the incompressible flow: the numerical fluxes of a high order scheme are limited toward that of a first order MPP scheme which was discussed in Levy (2005) [3]. The MPP property is guaranteed, while designed high order of spatial and temporal accuracy for the incompressible flow computation is not affected via extensive numerical experiments. The efficiency and effectiveness of the proposed scheme are demonstrated via several test examples.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2013.06.026</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2013-11, Vol.252, p.310-331
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1671455283
source Elsevier ScienceDirect Journals
subjects Accuracy
Computational fluid dynamics
Fluid flow
Flux
High order scheme
Hyperbolic conservation laws
Incompressible flow
Mathematical analysis
Maximum principle preserving
Parametrized flux limiter
Preserving
Runge–Kutta method
Temporal logic
WENO
title A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parametrized%20maximum%20principle%20preserving%20flux%20limiter%20for%20finite%20difference%20RK-WENO%20schemes%20with%20applications%20in%20incompressible%20flows&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Xiong,%20Tao&rft.date=2013-11-01&rft.volume=252&rft.spage=310&rft.epage=331&rft.pages=310-331&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2013.06.026&rft_dat=%3Cproquest_cross%3E1671455283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464545498&rft_id=info:pmid/&rft_els_id=S0021999113004567&rfr_iscdi=true