Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect

Lithium titanate (Li4Ti5O12) and SiO2-incorporated Li4Ti5O12 are synthesized, using a facile cellulose-assisted combustion technique, as anodes for lithium-ion batteries tested under different conditions, i.e., discharge to an end potential of 1.0 V/0.01 V at room/elevated temperature (55 °C). The p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2013-09, Vol.238, p.356-365
Hauptverfasser: Jiang, Simin, Zhao, Bote, Chen, Yubo, Cai, Rui, Shao, Zongping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 365
container_issue
container_start_page 356
container_title Journal of power sources
container_volume 238
creator Jiang, Simin
Zhao, Bote
Chen, Yubo
Cai, Rui
Shao, Zongping
description Lithium titanate (Li4Ti5O12) and SiO2-incorporated Li4Ti5O12 are synthesized, using a facile cellulose-assisted combustion technique, as anodes for lithium-ion batteries tested under different conditions, i.e., discharge to an end potential of 1.0 V/0.01 V at room/elevated temperature (55 °C). The particles are characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), nitrogen adsorption–desorption isotherms, X-ray spectrometry (EDX) and transmission electron microscopy (TEM). The results show that silicon element is successfully incorporated with Li4Ti5O12 homogeneously in the forms of Si-doping and SiO2 separate phase. When discharged in the potential range of 0.01–3.0 V, initial discharge capacities of 260 mA h g−1 and 298 mA h g−1 are obtained for the Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 electrodes, respectively. Both electrodes show stable cycling performance for 400 cycles (approximately 1.5 months) at room temperature between 0.01 and 3.0 V at a current density of 175 mA g−1. In addition, the stability of the electrodes under hurdle conditions (0.01–3.0 V at 55 °C) are explored and discussed, and a proposed mechanism for the “decrease–increase–decrease” cycling behavior is confirmed using electrochemical impedance spectroscopy (EIS) and TEM observations. The incorporation of SiO2 was found to improve the cycling stability under hurdle conditions. ► Si is incorporated with Li4Ti5O12 in the forms of Si-doping and SiO2-coating. ► Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 are tested under different conditions. ► Mechanism for “decrease–increase–decrease” cycling behavior is explained. ► SiO2 incorporation does improve the cycling stability under hurdle conditions.
doi_str_mv 10.1016/j.jpowsour.2013.03.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671454213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313003972</els_id><sourcerecordid>1671454213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-d4dbfd9f0bcf09af906fb5cb00637438c0dded13b42c6adacfb2971bdc8d26913</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVpodukf6HoEsjFm9GXZd9aQtIWFvaQ9CxkaUS1OJYj2Qn599WySa-BFwaGZ-aFh5BvDLYMWHt12B7m9FzSmrccmNhCDdMfyIZ1WjRcK_WRbEDortFaic_kSykHAGBMw4bc7aK8j2rPOMUR3ZKTx0LTjNku6Ok6ecz075r9iNSlycclpqlQO3l6F_ecxsmlPKdK1z3FEOqPc_Ip2LHg19d5Rv7c3txf_2p2-5-_r3_sGielWhov_RB8H2BwAXobemjDoNwA0AotRefAe_RMDJK71nrrwsB7zQbvOs_bnokzcnn6O-f0uGJZzEMsDsfRTpjWYlirmVSSM_E-qkAJ2VUpFW1PqMuplIzBzDk-2PxiGJijcHMwb8LNUbiBGqbr4cVrhy3OjiHbycXy_5prqbSUR-77icPq5iliNsVFnBz6mKs941N8r-ofRQabGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505348011</pqid></control><display><type>article</type><title>Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, Simin ; Zhao, Bote ; Chen, Yubo ; Cai, Rui ; Shao, Zongping</creator><creatorcontrib>Jiang, Simin ; Zhao, Bote ; Chen, Yubo ; Cai, Rui ; Shao, Zongping</creatorcontrib><description>Lithium titanate (Li4Ti5O12) and SiO2-incorporated Li4Ti5O12 are synthesized, using a facile cellulose-assisted combustion technique, as anodes for lithium-ion batteries tested under different conditions, i.e., discharge to an end potential of 1.0 V/0.01 V at room/elevated temperature (55 °C). The particles are characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), nitrogen adsorption–desorption isotherms, X-ray spectrometry (EDX) and transmission electron microscopy (TEM). The results show that silicon element is successfully incorporated with Li4Ti5O12 homogeneously in the forms of Si-doping and SiO2 separate phase. When discharged in the potential range of 0.01–3.0 V, initial discharge capacities of 260 mA h g−1 and 298 mA h g−1 are obtained for the Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 electrodes, respectively. Both electrodes show stable cycling performance for 400 cycles (approximately 1.5 months) at room temperature between 0.01 and 3.0 V at a current density of 175 mA g−1. In addition, the stability of the electrodes under hurdle conditions (0.01–3.0 V at 55 °C) are explored and discussed, and a proposed mechanism for the “decrease–increase–decrease” cycling behavior is confirmed using electrochemical impedance spectroscopy (EIS) and TEM observations. The incorporation of SiO2 was found to improve the cycling stability under hurdle conditions. ► Si is incorporated with Li4Ti5O12 in the forms of Si-doping and SiO2-coating. ► Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 are tested under different conditions. ► Mechanism for “decrease–increase–decrease” cycling behavior is explained. ► SiO2 incorporation does improve the cycling stability under hurdle conditions.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.03.017</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anode ; Applied sciences ; Cycles ; Direct energy conversion and energy accumulation ; Discharge ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemical impedance spectroscopy ; Electrodes ; Elevated temperature ; Exact sciences and technology ; Hurdle condition ; Lithium titanate ; Lithium-ion battery ; Materials ; Scanning electron microscopy ; Silicon dioxide ; Silicon oxide ; Transmission electron microscopy ; X-rays</subject><ispartof>Journal of power sources, 2013-09, Vol.238, p.356-365</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-d4dbfd9f0bcf09af906fb5cb00637438c0dded13b42c6adacfb2971bdc8d26913</citedby><cites>FETCH-LOGICAL-c445t-d4dbfd9f0bcf09af906fb5cb00637438c0dded13b42c6adacfb2971bdc8d26913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2013.03.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27457447$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Simin</creatorcontrib><creatorcontrib>Zhao, Bote</creatorcontrib><creatorcontrib>Chen, Yubo</creatorcontrib><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><title>Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect</title><title>Journal of power sources</title><description>Lithium titanate (Li4Ti5O12) and SiO2-incorporated Li4Ti5O12 are synthesized, using a facile cellulose-assisted combustion technique, as anodes for lithium-ion batteries tested under different conditions, i.e., discharge to an end potential of 1.0 V/0.01 V at room/elevated temperature (55 °C). The particles are characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), nitrogen adsorption–desorption isotherms, X-ray spectrometry (EDX) and transmission electron microscopy (TEM). The results show that silicon element is successfully incorporated with Li4Ti5O12 homogeneously in the forms of Si-doping and SiO2 separate phase. When discharged in the potential range of 0.01–3.0 V, initial discharge capacities of 260 mA h g−1 and 298 mA h g−1 are obtained for the Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 electrodes, respectively. Both electrodes show stable cycling performance for 400 cycles (approximately 1.5 months) at room temperature between 0.01 and 3.0 V at a current density of 175 mA g−1. In addition, the stability of the electrodes under hurdle conditions (0.01–3.0 V at 55 °C) are explored and discussed, and a proposed mechanism for the “decrease–increase–decrease” cycling behavior is confirmed using electrochemical impedance spectroscopy (EIS) and TEM observations. The incorporation of SiO2 was found to improve the cycling stability under hurdle conditions. ► Si is incorporated with Li4Ti5O12 in the forms of Si-doping and SiO2-coating. ► Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 are tested under different conditions. ► Mechanism for “decrease–increase–decrease” cycling behavior is explained. ► SiO2 incorporation does improve the cycling stability under hurdle conditions.</description><subject>Anode</subject><subject>Applied sciences</subject><subject>Cycles</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Discharge</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Elevated temperature</subject><subject>Exact sciences and technology</subject><subject>Hurdle condition</subject><subject>Lithium titanate</subject><subject>Lithium-ion battery</subject><subject>Materials</subject><subject>Scanning electron microscopy</subject><subject>Silicon dioxide</subject><subject>Silicon oxide</subject><subject>Transmission electron microscopy</subject><subject>X-rays</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVpodukf6HoEsjFm9GXZd9aQtIWFvaQ9CxkaUS1OJYj2Qn599WySa-BFwaGZ-aFh5BvDLYMWHt12B7m9FzSmrccmNhCDdMfyIZ1WjRcK_WRbEDortFaic_kSykHAGBMw4bc7aK8j2rPOMUR3ZKTx0LTjNku6Ok6ecz075r9iNSlycclpqlQO3l6F_ecxsmlPKdK1z3FEOqPc_Ip2LHg19d5Rv7c3txf_2p2-5-_r3_sGielWhov_RB8H2BwAXobemjDoNwA0AotRefAe_RMDJK71nrrwsB7zQbvOs_bnokzcnn6O-f0uGJZzEMsDsfRTpjWYlirmVSSM_E-qkAJ2VUpFW1PqMuplIzBzDk-2PxiGJijcHMwb8LNUbiBGqbr4cVrhy3OjiHbycXy_5prqbSUR-77icPq5iliNsVFnBz6mKs941N8r-ofRQabGQ</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Jiang, Simin</creator><creator>Zhao, Bote</creator><creator>Chen, Yubo</creator><creator>Cai, Rui</creator><creator>Shao, Zongping</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect</title><author>Jiang, Simin ; Zhao, Bote ; Chen, Yubo ; Cai, Rui ; Shao, Zongping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-d4dbfd9f0bcf09af906fb5cb00637438c0dded13b42c6adacfb2971bdc8d26913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anode</topic><topic>Applied sciences</topic><topic>Cycles</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Discharge</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Elevated temperature</topic><topic>Exact sciences and technology</topic><topic>Hurdle condition</topic><topic>Lithium titanate</topic><topic>Lithium-ion battery</topic><topic>Materials</topic><topic>Scanning electron microscopy</topic><topic>Silicon dioxide</topic><topic>Silicon oxide</topic><topic>Transmission electron microscopy</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Simin</creatorcontrib><creatorcontrib>Zhao, Bote</creatorcontrib><creatorcontrib>Chen, Yubo</creatorcontrib><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Simin</au><au>Zhao, Bote</au><au>Chen, Yubo</au><au>Cai, Rui</au><au>Shao, Zongping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect</atitle><jtitle>Journal of power sources</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>238</volume><spage>356</spage><epage>365</epage><pages>356-365</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Lithium titanate (Li4Ti5O12) and SiO2-incorporated Li4Ti5O12 are synthesized, using a facile cellulose-assisted combustion technique, as anodes for lithium-ion batteries tested under different conditions, i.e., discharge to an end potential of 1.0 V/0.01 V at room/elevated temperature (55 °C). The particles are characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), nitrogen adsorption–desorption isotherms, X-ray spectrometry (EDX) and transmission electron microscopy (TEM). The results show that silicon element is successfully incorporated with Li4Ti5O12 homogeneously in the forms of Si-doping and SiO2 separate phase. When discharged in the potential range of 0.01–3.0 V, initial discharge capacities of 260 mA h g−1 and 298 mA h g−1 are obtained for the Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 electrodes, respectively. Both electrodes show stable cycling performance for 400 cycles (approximately 1.5 months) at room temperature between 0.01 and 3.0 V at a current density of 175 mA g−1. In addition, the stability of the electrodes under hurdle conditions (0.01–3.0 V at 55 °C) are explored and discussed, and a proposed mechanism for the “decrease–increase–decrease” cycling behavior is confirmed using electrochemical impedance spectroscopy (EIS) and TEM observations. The incorporation of SiO2 was found to improve the cycling stability under hurdle conditions. ► Si is incorporated with Li4Ti5O12 in the forms of Si-doping and SiO2-coating. ► Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 are tested under different conditions. ► Mechanism for “decrease–increase–decrease” cycling behavior is explained. ► SiO2 incorporation does improve the cycling stability under hurdle conditions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.03.017</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2013-09, Vol.238, p.356-365
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1671454213
source Elsevier ScienceDirect Journals
subjects Anode
Applied sciences
Cycles
Direct energy conversion and energy accumulation
Discharge
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrochemical impedance spectroscopy
Electrodes
Elevated temperature
Exact sciences and technology
Hurdle condition
Lithium titanate
Lithium-ion battery
Materials
Scanning electron microscopy
Silicon dioxide
Silicon oxide
Transmission electron microscopy
X-rays
title Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li4Ti5O12%20electrodes%20operated%20under%20hurdle%20conditions%20and%20SiO2%20incorporation%20effect&rft.jtitle=Journal%20of%20power%20sources&rft.au=Jiang,%20Simin&rft.date=2013-09-01&rft.volume=238&rft.spage=356&rft.epage=365&rft.pages=356-365&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.03.017&rft_dat=%3Cproquest_cross%3E1671454213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505348011&rft_id=info:pmid/&rft_els_id=S0378775313003972&rfr_iscdi=true