Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect
Lithium titanate (Li4Ti5O12) and SiO2-incorporated Li4Ti5O12 are synthesized, using a facile cellulose-assisted combustion technique, as anodes for lithium-ion batteries tested under different conditions, i.e., discharge to an end potential of 1.0 V/0.01 V at room/elevated temperature (55 °C). The p...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2013-09, Vol.238, p.356-365 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 365 |
---|---|
container_issue | |
container_start_page | 356 |
container_title | Journal of power sources |
container_volume | 238 |
creator | Jiang, Simin Zhao, Bote Chen, Yubo Cai, Rui Shao, Zongping |
description | Lithium titanate (Li4Ti5O12) and SiO2-incorporated Li4Ti5O12 are synthesized, using a facile cellulose-assisted combustion technique, as anodes for lithium-ion batteries tested under different conditions, i.e., discharge to an end potential of 1.0 V/0.01 V at room/elevated temperature (55 °C). The particles are characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), nitrogen adsorption–desorption isotherms, X-ray spectrometry (EDX) and transmission electron microscopy (TEM). The results show that silicon element is successfully incorporated with Li4Ti5O12 homogeneously in the forms of Si-doping and SiO2 separate phase. When discharged in the potential range of 0.01–3.0 V, initial discharge capacities of 260 mA h g−1 and 298 mA h g−1 are obtained for the Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 electrodes, respectively. Both electrodes show stable cycling performance for 400 cycles (approximately 1.5 months) at room temperature between 0.01 and 3.0 V at a current density of 175 mA g−1. In addition, the stability of the electrodes under hurdle conditions (0.01–3.0 V at 55 °C) are explored and discussed, and a proposed mechanism for the “decrease–increase–decrease” cycling behavior is confirmed using electrochemical impedance spectroscopy (EIS) and TEM observations. The incorporation of SiO2 was found to improve the cycling stability under hurdle conditions.
► Si is incorporated with Li4Ti5O12 in the forms of Si-doping and SiO2-coating. ► Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 are tested under different conditions. ► Mechanism for “decrease–increase–decrease” cycling behavior is explained. ► SiO2 incorporation does improve the cycling stability under hurdle conditions. |
doi_str_mv | 10.1016/j.jpowsour.2013.03.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671454213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313003972</els_id><sourcerecordid>1671454213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-d4dbfd9f0bcf09af906fb5cb00637438c0dded13b42c6adacfb2971bdc8d26913</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVpodukf6HoEsjFm9GXZd9aQtIWFvaQ9CxkaUS1OJYj2Qn599WySa-BFwaGZ-aFh5BvDLYMWHt12B7m9FzSmrccmNhCDdMfyIZ1WjRcK_WRbEDortFaic_kSykHAGBMw4bc7aK8j2rPOMUR3ZKTx0LTjNku6Ok6ecz075r9iNSlycclpqlQO3l6F_ecxsmlPKdK1z3FEOqPc_Ip2LHg19d5Rv7c3txf_2p2-5-_r3_sGielWhov_RB8H2BwAXobemjDoNwA0AotRefAe_RMDJK71nrrwsB7zQbvOs_bnokzcnn6O-f0uGJZzEMsDsfRTpjWYlirmVSSM_E-qkAJ2VUpFW1PqMuplIzBzDk-2PxiGJijcHMwb8LNUbiBGqbr4cVrhy3OjiHbycXy_5prqbSUR-77icPq5iliNsVFnBz6mKs941N8r-ofRQabGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505348011</pqid></control><display><type>article</type><title>Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect</title><source>Elsevier ScienceDirect Journals</source><creator>Jiang, Simin ; Zhao, Bote ; Chen, Yubo ; Cai, Rui ; Shao, Zongping</creator><creatorcontrib>Jiang, Simin ; Zhao, Bote ; Chen, Yubo ; Cai, Rui ; Shao, Zongping</creatorcontrib><description>Lithium titanate (Li4Ti5O12) and SiO2-incorporated Li4Ti5O12 are synthesized, using a facile cellulose-assisted combustion technique, as anodes for lithium-ion batteries tested under different conditions, i.e., discharge to an end potential of 1.0 V/0.01 V at room/elevated temperature (55 °C). The particles are characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), nitrogen adsorption–desorption isotherms, X-ray spectrometry (EDX) and transmission electron microscopy (TEM). The results show that silicon element is successfully incorporated with Li4Ti5O12 homogeneously in the forms of Si-doping and SiO2 separate phase. When discharged in the potential range of 0.01–3.0 V, initial discharge capacities of 260 mA h g−1 and 298 mA h g−1 are obtained for the Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 electrodes, respectively. Both electrodes show stable cycling performance for 400 cycles (approximately 1.5 months) at room temperature between 0.01 and 3.0 V at a current density of 175 mA g−1. In addition, the stability of the electrodes under hurdle conditions (0.01–3.0 V at 55 °C) are explored and discussed, and a proposed mechanism for the “decrease–increase–decrease” cycling behavior is confirmed using electrochemical impedance spectroscopy (EIS) and TEM observations. The incorporation of SiO2 was found to improve the cycling stability under hurdle conditions.
► Si is incorporated with Li4Ti5O12 in the forms of Si-doping and SiO2-coating. ► Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 are tested under different conditions. ► Mechanism for “decrease–increase–decrease” cycling behavior is explained. ► SiO2 incorporation does improve the cycling stability under hurdle conditions.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.03.017</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anode ; Applied sciences ; Cycles ; Direct energy conversion and energy accumulation ; Discharge ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemical impedance spectroscopy ; Electrodes ; Elevated temperature ; Exact sciences and technology ; Hurdle condition ; Lithium titanate ; Lithium-ion battery ; Materials ; Scanning electron microscopy ; Silicon dioxide ; Silicon oxide ; Transmission electron microscopy ; X-rays</subject><ispartof>Journal of power sources, 2013-09, Vol.238, p.356-365</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-d4dbfd9f0bcf09af906fb5cb00637438c0dded13b42c6adacfb2971bdc8d26913</citedby><cites>FETCH-LOGICAL-c445t-d4dbfd9f0bcf09af906fb5cb00637438c0dded13b42c6adacfb2971bdc8d26913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2013.03.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27457447$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Simin</creatorcontrib><creatorcontrib>Zhao, Bote</creatorcontrib><creatorcontrib>Chen, Yubo</creatorcontrib><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><title>Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect</title><title>Journal of power sources</title><description>Lithium titanate (Li4Ti5O12) and SiO2-incorporated Li4Ti5O12 are synthesized, using a facile cellulose-assisted combustion technique, as anodes for lithium-ion batteries tested under different conditions, i.e., discharge to an end potential of 1.0 V/0.01 V at room/elevated temperature (55 °C). The particles are characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), nitrogen adsorption–desorption isotherms, X-ray spectrometry (EDX) and transmission electron microscopy (TEM). The results show that silicon element is successfully incorporated with Li4Ti5O12 homogeneously in the forms of Si-doping and SiO2 separate phase. When discharged in the potential range of 0.01–3.0 V, initial discharge capacities of 260 mA h g−1 and 298 mA h g−1 are obtained for the Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 electrodes, respectively. Both electrodes show stable cycling performance for 400 cycles (approximately 1.5 months) at room temperature between 0.01 and 3.0 V at a current density of 175 mA g−1. In addition, the stability of the electrodes under hurdle conditions (0.01–3.0 V at 55 °C) are explored and discussed, and a proposed mechanism for the “decrease–increase–decrease” cycling behavior is confirmed using electrochemical impedance spectroscopy (EIS) and TEM observations. The incorporation of SiO2 was found to improve the cycling stability under hurdle conditions.
► Si is incorporated with Li4Ti5O12 in the forms of Si-doping and SiO2-coating. ► Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 are tested under different conditions. ► Mechanism for “decrease–increase–decrease” cycling behavior is explained. ► SiO2 incorporation does improve the cycling stability under hurdle conditions.</description><subject>Anode</subject><subject>Applied sciences</subject><subject>Cycles</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Discharge</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Elevated temperature</subject><subject>Exact sciences and technology</subject><subject>Hurdle condition</subject><subject>Lithium titanate</subject><subject>Lithium-ion battery</subject><subject>Materials</subject><subject>Scanning electron microscopy</subject><subject>Silicon dioxide</subject><subject>Silicon oxide</subject><subject>Transmission electron microscopy</subject><subject>X-rays</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVpodukf6HoEsjFm9GXZd9aQtIWFvaQ9CxkaUS1OJYj2Qn599WySa-BFwaGZ-aFh5BvDLYMWHt12B7m9FzSmrccmNhCDdMfyIZ1WjRcK_WRbEDortFaic_kSykHAGBMw4bc7aK8j2rPOMUR3ZKTx0LTjNku6Ok6ecz075r9iNSlycclpqlQO3l6F_ecxsmlPKdK1z3FEOqPc_Ip2LHg19d5Rv7c3txf_2p2-5-_r3_sGielWhov_RB8H2BwAXobemjDoNwA0AotRefAe_RMDJK71nrrwsB7zQbvOs_bnokzcnn6O-f0uGJZzEMsDsfRTpjWYlirmVSSM_E-qkAJ2VUpFW1PqMuplIzBzDk-2PxiGJijcHMwb8LNUbiBGqbr4cVrhy3OjiHbycXy_5prqbSUR-77icPq5iliNsVFnBz6mKs941N8r-ofRQabGQ</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Jiang, Simin</creator><creator>Zhao, Bote</creator><creator>Chen, Yubo</creator><creator>Cai, Rui</creator><creator>Shao, Zongping</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130901</creationdate><title>Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect</title><author>Jiang, Simin ; Zhao, Bote ; Chen, Yubo ; Cai, Rui ; Shao, Zongping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-d4dbfd9f0bcf09af906fb5cb00637438c0dded13b42c6adacfb2971bdc8d26913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anode</topic><topic>Applied sciences</topic><topic>Cycles</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Discharge</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Elevated temperature</topic><topic>Exact sciences and technology</topic><topic>Hurdle condition</topic><topic>Lithium titanate</topic><topic>Lithium-ion battery</topic><topic>Materials</topic><topic>Scanning electron microscopy</topic><topic>Silicon dioxide</topic><topic>Silicon oxide</topic><topic>Transmission electron microscopy</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Simin</creatorcontrib><creatorcontrib>Zhao, Bote</creatorcontrib><creatorcontrib>Chen, Yubo</creatorcontrib><creatorcontrib>Cai, Rui</creatorcontrib><creatorcontrib>Shao, Zongping</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Simin</au><au>Zhao, Bote</au><au>Chen, Yubo</au><au>Cai, Rui</au><au>Shao, Zongping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect</atitle><jtitle>Journal of power sources</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>238</volume><spage>356</spage><epage>365</epage><pages>356-365</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Lithium titanate (Li4Ti5O12) and SiO2-incorporated Li4Ti5O12 are synthesized, using a facile cellulose-assisted combustion technique, as anodes for lithium-ion batteries tested under different conditions, i.e., discharge to an end potential of 1.0 V/0.01 V at room/elevated temperature (55 °C). The particles are characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), nitrogen adsorption–desorption isotherms, X-ray spectrometry (EDX) and transmission electron microscopy (TEM). The results show that silicon element is successfully incorporated with Li4Ti5O12 homogeneously in the forms of Si-doping and SiO2 separate phase. When discharged in the potential range of 0.01–3.0 V, initial discharge capacities of 260 mA h g−1 and 298 mA h g−1 are obtained for the Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 electrodes, respectively. Both electrodes show stable cycling performance for 400 cycles (approximately 1.5 months) at room temperature between 0.01 and 3.0 V at a current density of 175 mA g−1. In addition, the stability of the electrodes under hurdle conditions (0.01–3.0 V at 55 °C) are explored and discussed, and a proposed mechanism for the “decrease–increase–decrease” cycling behavior is confirmed using electrochemical impedance spectroscopy (EIS) and TEM observations. The incorporation of SiO2 was found to improve the cycling stability under hurdle conditions.
► Si is incorporated with Li4Ti5O12 in the forms of Si-doping and SiO2-coating. ► Li4Ti5O12 and SiO2-incorporated Li4Ti5O12 are tested under different conditions. ► Mechanism for “decrease–increase–decrease” cycling behavior is explained. ► SiO2 incorporation does improve the cycling stability under hurdle conditions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.03.017</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2013-09, Vol.238, p.356-365 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671454213 |
source | Elsevier ScienceDirect Journals |
subjects | Anode Applied sciences Cycles Direct energy conversion and energy accumulation Discharge Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrochemical impedance spectroscopy Electrodes Elevated temperature Exact sciences and technology Hurdle condition Lithium titanate Lithium-ion battery Materials Scanning electron microscopy Silicon dioxide Silicon oxide Transmission electron microscopy X-rays |
title | Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li4Ti5O12%20electrodes%20operated%20under%20hurdle%20conditions%20and%20SiO2%20incorporation%20effect&rft.jtitle=Journal%20of%20power%20sources&rft.au=Jiang,%20Simin&rft.date=2013-09-01&rft.volume=238&rft.spage=356&rft.epage=365&rft.pages=356-365&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.03.017&rft_dat=%3Cproquest_cross%3E1671454213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505348011&rft_id=info:pmid/&rft_els_id=S0378775313003972&rfr_iscdi=true |