Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters
Although the coefficient-relation of the even-order sub-filters in the Farrow structure has been revealed and adopted in the weighted-least-squares (WLS) design of even-order finite-impulse-response (FIR) variable fractional-delay (VFD) digital filters in the literature, it has never been exploited...
Gespeichert in:
Veröffentlicht in: | Signal processing 2013-04, Vol.93 (4), p.923-932 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 932 |
---|---|
container_issue | 4 |
container_start_page | 923 |
container_title | Signal processing |
container_volume | 93 |
creator | Deng, Tian-Bo Qin, Wei |
description | Although the coefficient-relation of the even-order sub-filters in the Farrow structure has been revealed and adopted in the weighted-least-squares (WLS) design of even-order finite-impulse-response (FIR) variable fractional-delay (VFD) digital filters in the literature, it has never been exploited in implementing low-complexity VFD filters. This paper aims to(i)propose a low-complexity implementation structure through exploiting the coefficient-relation such that the coefficient-relation is not only utilized in the design process, but also utilized in the low-complexity implementation;(ii)formulate the minimax design of an even-order VFD filter through exploiting the coefficient-relation;(iii)propose a new two-stage scheme called increase-then-decrease scheme for optimizing the sub-filter orders so as to minimize the VFD digital filter complexity.With the above three advances, an even-order VFD filter can not only be designed and but also be implemented efficiently by exploiting the coefficient-relation. We will use a design example to illustrate the low complexity and high design accuracy.
► We propose a low-complexity structure for implementing even-order VFD filters. ► An SOCP minimax design is proposed by utilizing the coefficient-relation. ► We propose a two-stage scheme for optimizing the even-order sub-filter orders. ► An example is given for illustrating both the implementation and design. |
doi_str_mv | 10.1016/j.sigpro.2012.11.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671453630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016516841200388X</els_id><sourcerecordid>1671453630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-8eace383f02940b5b386bc0fe684fffa2363e9fd4b99599ae553851b95bf312d3</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxPrxDzxwMfGyKyzLdrmYmMavpIkXPRMWhoaGLhVotf9emjYePc3lnWfmfRC6oaSmhHb3yzq5xTqGuiG0qSmtCWlP0IT206aacj49RZMS4xXt-vYcXaS0JIRQ1pEJSrMA1jrtYMw4glfZhbEaVAKDV250K_WDDRT8iNVosA_flQ6rtYcfl3c45bjReRMBB4u3Kjo1eMA2Kr3HKF-ZQtxh4xYuK4-t8xliukJnVvkE18d5iT6fnz5mr9X8_eVt9jivdMt4rnpQGljPLGlESwY-sL4bNLFQWlhrVcM6BsKadhCCC6GAc9ZzOgg-WEYbwy7R3YFb1HxtIGW5ckmD92qEsEmSdlPa8kIhJdoeojqGlCJYuY6le9xJSuTesVzKg2O5dywplcVxWbs9XlBJK1-Kj9qlv92mK_-IVpTcwyEHpe7WQZRpb1yDcRF0lia4_w_9AoLClvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671453630</pqid></control><display><type>article</type><title>Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Deng, Tian-Bo ; Qin, Wei</creator><creatorcontrib>Deng, Tian-Bo ; Qin, Wei</creatorcontrib><description>Although the coefficient-relation of the even-order sub-filters in the Farrow structure has been revealed and adopted in the weighted-least-squares (WLS) design of even-order finite-impulse-response (FIR) variable fractional-delay (VFD) digital filters in the literature, it has never been exploited in implementing low-complexity VFD filters. This paper aims to(i)propose a low-complexity implementation structure through exploiting the coefficient-relation such that the coefficient-relation is not only utilized in the design process, but also utilized in the low-complexity implementation;(ii)formulate the minimax design of an even-order VFD filter through exploiting the coefficient-relation;(iii)propose a new two-stage scheme called increase-then-decrease scheme for optimizing the sub-filter orders so as to minimize the VFD digital filter complexity.With the above three advances, an even-order VFD filter can not only be designed and but also be implemented efficiently by exploiting the coefficient-relation. We will use a design example to illustrate the low complexity and high design accuracy.
► We propose a low-complexity structure for implementing even-order VFD filters. ► An SOCP minimax design is proposed by utilizing the coefficient-relation. ► We propose a two-stage scheme for optimizing the even-order sub-filter orders. ► An example is given for illustrating both the implementation and design.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2012.11.004</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Coefficient-relation ; Coefficients ; Detection, estimation, filtering, equalization, prediction ; Digital filters ; Exact sciences and technology ; Information, signal and communications theory ; Low-complexity structure ; Minimax design ; Minimax technique ; Signal and communications theory ; Signal processing ; Signal, noise ; Sub-filter pair ; Telecommunications and information theory ; Two-stage order optimization ; Variable fractional-delay (VFD)</subject><ispartof>Signal processing, 2013-04, Vol.93 (4), p.923-932</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-8eace383f02940b5b386bc0fe684fffa2363e9fd4b99599ae553851b95bf312d3</citedby><cites>FETCH-LOGICAL-c435t-8eace383f02940b5b386bc0fe684fffa2363e9fd4b99599ae553851b95bf312d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sigpro.2012.11.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26851949$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Tian-Bo</creatorcontrib><creatorcontrib>Qin, Wei</creatorcontrib><title>Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters</title><title>Signal processing</title><description>Although the coefficient-relation of the even-order sub-filters in the Farrow structure has been revealed and adopted in the weighted-least-squares (WLS) design of even-order finite-impulse-response (FIR) variable fractional-delay (VFD) digital filters in the literature, it has never been exploited in implementing low-complexity VFD filters. This paper aims to(i)propose a low-complexity implementation structure through exploiting the coefficient-relation such that the coefficient-relation is not only utilized in the design process, but also utilized in the low-complexity implementation;(ii)formulate the minimax design of an even-order VFD filter through exploiting the coefficient-relation;(iii)propose a new two-stage scheme called increase-then-decrease scheme for optimizing the sub-filter orders so as to minimize the VFD digital filter complexity.With the above three advances, an even-order VFD filter can not only be designed and but also be implemented efficiently by exploiting the coefficient-relation. We will use a design example to illustrate the low complexity and high design accuracy.
► We propose a low-complexity structure for implementing even-order VFD filters. ► An SOCP minimax design is proposed by utilizing the coefficient-relation. ► We propose a two-stage scheme for optimizing the even-order sub-filter orders. ► An example is given for illustrating both the implementation and design.</description><subject>Applied sciences</subject><subject>Coefficient-relation</subject><subject>Coefficients</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Digital filters</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Low-complexity structure</subject><subject>Minimax design</subject><subject>Minimax technique</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Sub-filter pair</subject><subject>Telecommunications and information theory</subject><subject>Two-stage order optimization</subject><subject>Variable fractional-delay (VFD)</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQhonRxPrxDzxwMfGyKyzLdrmYmMavpIkXPRMWhoaGLhVotf9emjYePc3lnWfmfRC6oaSmhHb3yzq5xTqGuiG0qSmtCWlP0IT206aacj49RZMS4xXt-vYcXaS0JIRQ1pEJSrMA1jrtYMw4glfZhbEaVAKDV250K_WDDRT8iNVosA_flQ6rtYcfl3c45bjReRMBB4u3Kjo1eMA2Kr3HKF-ZQtxh4xYuK4-t8xliukJnVvkE18d5iT6fnz5mr9X8_eVt9jivdMt4rnpQGljPLGlESwY-sL4bNLFQWlhrVcM6BsKadhCCC6GAc9ZzOgg-WEYbwy7R3YFb1HxtIGW5ckmD92qEsEmSdlPa8kIhJdoeojqGlCJYuY6le9xJSuTesVzKg2O5dywplcVxWbs9XlBJK1-Kj9qlv92mK_-IVpTcwyEHpe7WQZRpb1yDcRF0lia4_w_9AoLClvw</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Deng, Tian-Bo</creator><creator>Qin, Wei</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130401</creationdate><title>Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters</title><author>Deng, Tian-Bo ; Qin, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-8eace383f02940b5b386bc0fe684fffa2363e9fd4b99599ae553851b95bf312d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Coefficient-relation</topic><topic>Coefficients</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Digital filters</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Low-complexity structure</topic><topic>Minimax design</topic><topic>Minimax technique</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Sub-filter pair</topic><topic>Telecommunications and information theory</topic><topic>Two-stage order optimization</topic><topic>Variable fractional-delay (VFD)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Tian-Bo</creatorcontrib><creatorcontrib>Qin, Wei</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Tian-Bo</au><au>Qin, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters</atitle><jtitle>Signal processing</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>93</volume><issue>4</issue><spage>923</spage><epage>932</epage><pages>923-932</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>Although the coefficient-relation of the even-order sub-filters in the Farrow structure has been revealed and adopted in the weighted-least-squares (WLS) design of even-order finite-impulse-response (FIR) variable fractional-delay (VFD) digital filters in the literature, it has never been exploited in implementing low-complexity VFD filters. This paper aims to(i)propose a low-complexity implementation structure through exploiting the coefficient-relation such that the coefficient-relation is not only utilized in the design process, but also utilized in the low-complexity implementation;(ii)formulate the minimax design of an even-order VFD filter through exploiting the coefficient-relation;(iii)propose a new two-stage scheme called increase-then-decrease scheme for optimizing the sub-filter orders so as to minimize the VFD digital filter complexity.With the above three advances, an even-order VFD filter can not only be designed and but also be implemented efficiently by exploiting the coefficient-relation. We will use a design example to illustrate the low complexity and high design accuracy.
► We propose a low-complexity structure for implementing even-order VFD filters. ► An SOCP minimax design is proposed by utilizing the coefficient-relation. ► We propose a two-stage scheme for optimizing the even-order sub-filter orders. ► An example is given for illustrating both the implementation and design.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2012.11.004</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1684 |
ispartof | Signal processing, 2013-04, Vol.93 (4), p.923-932 |
issn | 0165-1684 1872-7557 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671453630 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Coefficient-relation Coefficients Detection, estimation, filtering, equalization, prediction Digital filters Exact sciences and technology Information, signal and communications theory Low-complexity structure Minimax design Minimax technique Signal and communications theory Signal processing Signal, noise Sub-filter pair Telecommunications and information theory Two-stage order optimization Variable fractional-delay (VFD) |
title | Coefficient relation-based minimax design and low-complexity structure of variable fractional-delay digital filters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coefficient%20relation-based%20minimax%20design%20and%20low-complexity%20structure%20of%20variable%20fractional-delay%20digital%20filters&rft.jtitle=Signal%20processing&rft.au=Deng,%20Tian-Bo&rft.date=2013-04-01&rft.volume=93&rft.issue=4&rft.spage=923&rft.epage=932&rft.pages=923-932&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2012.11.004&rft_dat=%3Cproquest_cross%3E1671453630%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671453630&rft_id=info:pmid/&rft_els_id=S016516841200388X&rfr_iscdi=true |