Model Predictive Control for Reference Tracking on an Industrial Machine Tool Servo Drive

The benefits of model predictive control (MPC) have been well established; however its application to reference tracking on digital servo drives (DSDs), which typically have very fast update rates, is limited by the computational power of present-day processors. This paper presents a novel MPC formu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2013-05, Vol.9 (2), p.808-816
Hauptverfasser: Stephens, M. A., Manzie, C., Good, M. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 816
container_issue 2
container_start_page 808
container_title IEEE transactions on industrial informatics
container_volume 9
creator Stephens, M. A.
Manzie, C.
Good, M. C.
description The benefits of model predictive control (MPC) have been well established; however its application to reference tracking on digital servo drives (DSDs), which typically have very fast update rates, is limited by the computational power of present-day processors. This paper presents a novel MPC formulation, which provides a mechanism to trade-off online computation effort with tracking performance, while maintaining stability. This is achieved by introducing a trajectory horizon, which is distinct from the prediction and control horizons typically encountered in MPC formulations. It is shown that increasing the trajectory horizon inherently leads to improved tracking; however larger horizon lengths also have the unwanted effect of increasing online computation. The proposed MPC formulation is compatible with recently developed explicit MPC solutions, and hence the burden of online optimization is avoided. The new approach is successfully implemented on an industrial machine tool DSD, and in terms of tracking accuracy, is shown to outperform the incumbent approach of cascaded PID control.
doi_str_mv 10.1109/TII.2012.2223222
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671453218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6327360</ieee_id><sourcerecordid>2866199681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-89cfbd6cbd30680de5e7d54f42e50255b9be421fa93a8e02ac123167f92206033</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhiMEEqWwI7FYYmFJOZ_jtBlR-arUCgRlYLJc5wIpqV3spBL_HletGBhOd8Pzvjo9SXLOYcA5FNfzyWSAwHGAiCLOQdLjRcZTAAmH8ZaSpwJBHCcnISwBxBBE0UveZ66khj17KmvT1htiY2db7xpWOc9eqCJP1hCbe22-avvBnGXasoktu9D6Wjdsps1nbSPhYuiV_MaxWx-LTpOjSjeBzva7n7zd383Hj-n06WEyvpmmRmDWpqPCVIsyN4tSQD6CkiQNS5lVGZIElHJRLChDXulC6BEBasNR8HxYFYiQgxD95GrXu_buu6PQqlUdDDWNtuS6oCLLMymQjyJ6-Q9dus7b-J3imBc5IEgeKdhRxrsQPFVq7euV9j-Kg9q6VtG12rpWe9cxcrGL1ET0h-cChyK--AuEWnjC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1269602051</pqid></control><display><type>article</type><title>Model Predictive Control for Reference Tracking on an Industrial Machine Tool Servo Drive</title><source>IEEE Electronic Library (IEL)</source><creator>Stephens, M. A. ; Manzie, C. ; Good, M. C.</creator><creatorcontrib>Stephens, M. A. ; Manzie, C. ; Good, M. C.</creatorcontrib><description>The benefits of model predictive control (MPC) have been well established; however its application to reference tracking on digital servo drives (DSDs), which typically have very fast update rates, is limited by the computational power of present-day processors. This paper presents a novel MPC formulation, which provides a mechanism to trade-off online computation effort with tracking performance, while maintaining stability. This is achieved by introducing a trajectory horizon, which is distinct from the prediction and control horizons typically encountered in MPC formulations. It is shown that increasing the trajectory horizon inherently leads to improved tracking; however larger horizon lengths also have the unwanted effect of increasing online computation. The proposed MPC formulation is compatible with recently developed explicit MPC solutions, and hence the burden of online optimization is avoided. The new approach is successfully implemented on an industrial machine tool DSD, and in terms of tracking accuracy, is shown to outperform the incumbent approach of cascaded PID control.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2012.2223222</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computation ; Computer numerical control ; Discrete-time systems ; Horizon ; Informatics ; Machine tools ; Mathematical models ; model predictive control (MPC) ; motion control ; On-line systems ; Online ; Optimization ; Predictive control ; Servocontrol ; servomechanisms ; Servomotors ; Studies ; Tracking ; tracking systems ; Trajectory ; Vectors</subject><ispartof>IEEE transactions on industrial informatics, 2013-05, Vol.9 (2), p.808-816</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-89cfbd6cbd30680de5e7d54f42e50255b9be421fa93a8e02ac123167f92206033</citedby><cites>FETCH-LOGICAL-c324t-89cfbd6cbd30680de5e7d54f42e50255b9be421fa93a8e02ac123167f92206033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6327360$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6327360$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Stephens, M. A.</creatorcontrib><creatorcontrib>Manzie, C.</creatorcontrib><creatorcontrib>Good, M. C.</creatorcontrib><title>Model Predictive Control for Reference Tracking on an Industrial Machine Tool Servo Drive</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>The benefits of model predictive control (MPC) have been well established; however its application to reference tracking on digital servo drives (DSDs), which typically have very fast update rates, is limited by the computational power of present-day processors. This paper presents a novel MPC formulation, which provides a mechanism to trade-off online computation effort with tracking performance, while maintaining stability. This is achieved by introducing a trajectory horizon, which is distinct from the prediction and control horizons typically encountered in MPC formulations. It is shown that increasing the trajectory horizon inherently leads to improved tracking; however larger horizon lengths also have the unwanted effect of increasing online computation. The proposed MPC formulation is compatible with recently developed explicit MPC solutions, and hence the burden of online optimization is avoided. The new approach is successfully implemented on an industrial machine tool DSD, and in terms of tracking accuracy, is shown to outperform the incumbent approach of cascaded PID control.</description><subject>Computation</subject><subject>Computer numerical control</subject><subject>Discrete-time systems</subject><subject>Horizon</subject><subject>Informatics</subject><subject>Machine tools</subject><subject>Mathematical models</subject><subject>model predictive control (MPC)</subject><subject>motion control</subject><subject>On-line systems</subject><subject>Online</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Servocontrol</subject><subject>servomechanisms</subject><subject>Servomotors</subject><subject>Studies</subject><subject>Tracking</subject><subject>tracking systems</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhiMEEqWwI7FYYmFJOZ_jtBlR-arUCgRlYLJc5wIpqV3spBL_HletGBhOd8Pzvjo9SXLOYcA5FNfzyWSAwHGAiCLOQdLjRcZTAAmH8ZaSpwJBHCcnISwBxBBE0UveZ66khj17KmvT1htiY2db7xpWOc9eqCJP1hCbe22-avvBnGXasoktu9D6Wjdsps1nbSPhYuiV_MaxWx-LTpOjSjeBzva7n7zd383Hj-n06WEyvpmmRmDWpqPCVIsyN4tSQD6CkiQNS5lVGZIElHJRLChDXulC6BEBasNR8HxYFYiQgxD95GrXu_buu6PQqlUdDDWNtuS6oCLLMymQjyJ6-Q9dus7b-J3imBc5IEgeKdhRxrsQPFVq7euV9j-Kg9q6VtG12rpWe9cxcrGL1ET0h-cChyK--AuEWnjC</recordid><startdate>201305</startdate><enddate>201305</enddate><creator>Stephens, M. A.</creator><creator>Manzie, C.</creator><creator>Good, M. C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201305</creationdate><title>Model Predictive Control for Reference Tracking on an Industrial Machine Tool Servo Drive</title><author>Stephens, M. A. ; Manzie, C. ; Good, M. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-89cfbd6cbd30680de5e7d54f42e50255b9be421fa93a8e02ac123167f92206033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computation</topic><topic>Computer numerical control</topic><topic>Discrete-time systems</topic><topic>Horizon</topic><topic>Informatics</topic><topic>Machine tools</topic><topic>Mathematical models</topic><topic>model predictive control (MPC)</topic><topic>motion control</topic><topic>On-line systems</topic><topic>Online</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Servocontrol</topic><topic>servomechanisms</topic><topic>Servomotors</topic><topic>Studies</topic><topic>Tracking</topic><topic>tracking systems</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Stephens, M. A.</creatorcontrib><creatorcontrib>Manzie, C.</creatorcontrib><creatorcontrib>Good, M. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stephens, M. A.</au><au>Manzie, C.</au><au>Good, M. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model Predictive Control for Reference Tracking on an Industrial Machine Tool Servo Drive</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2013-05</date><risdate>2013</risdate><volume>9</volume><issue>2</issue><spage>808</spage><epage>816</epage><pages>808-816</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>The benefits of model predictive control (MPC) have been well established; however its application to reference tracking on digital servo drives (DSDs), which typically have very fast update rates, is limited by the computational power of present-day processors. This paper presents a novel MPC formulation, which provides a mechanism to trade-off online computation effort with tracking performance, while maintaining stability. This is achieved by introducing a trajectory horizon, which is distinct from the prediction and control horizons typically encountered in MPC formulations. It is shown that increasing the trajectory horizon inherently leads to improved tracking; however larger horizon lengths also have the unwanted effect of increasing online computation. The proposed MPC formulation is compatible with recently developed explicit MPC solutions, and hence the burden of online optimization is avoided. The new approach is successfully implemented on an industrial machine tool DSD, and in terms of tracking accuracy, is shown to outperform the incumbent approach of cascaded PID control.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2012.2223222</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2013-05, Vol.9 (2), p.808-816
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_miscellaneous_1671453218
source IEEE Electronic Library (IEL)
subjects Computation
Computer numerical control
Discrete-time systems
Horizon
Informatics
Machine tools
Mathematical models
model predictive control (MPC)
motion control
On-line systems
Online
Optimization
Predictive control
Servocontrol
servomechanisms
Servomotors
Studies
Tracking
tracking systems
Trajectory
Vectors
title Model Predictive Control for Reference Tracking on an Industrial Machine Tool Servo Drive
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20Predictive%20Control%20for%20Reference%20Tracking%20on%20an%20Industrial%20Machine%20Tool%20Servo%20Drive&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Stephens,%20M.%20A.&rft.date=2013-05&rft.volume=9&rft.issue=2&rft.spage=808&rft.epage=816&rft.pages=808-816&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2012.2223222&rft_dat=%3Cproquest_RIE%3E2866199681%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1269602051&rft_id=info:pmid/&rft_ieee_id=6327360&rfr_iscdi=true