Strong nonlinear growth of energy coupling during laser irradiation of transparent dielectrics and its significance for laser induced damage
The interaction of high power nanosecond laser pulses with absorbing defects, located in the bulk of transparent dielectric materials and having a multilevel electronic structure, is addressed. The model assumes a moderate localized initial absorption that is strongly enhanced during the laser pulse...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2012-05, Vol.111 (9), p.093106-093106-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The interaction of high power nanosecond laser pulses with absorbing defects, located in the bulk of transparent dielectric materials and having a multilevel electronic structure, is addressed. The model assumes a moderate localized initial absorption that is strongly enhanced during the laser pulse via excited state absorption and thermally driven generation of new point defects in surrounding material. This model is applied to laser induced damage initiation in the bulk of potassium dihydrogen phosphate crystals (
KH
2
PO
4
or KDP) and addresses how during a fraction of the pulse duration the host material around the defect cluster is transformed into a strong absorber that leads to the sufficiently large energy coupling resulting in a damage event. This scenario is supported by time resolved imaging of material modification during the initial phases of laser induced damage in KDP and fused silica. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4707755 |