3D hierarchically porous Cu-BiOCl nanocomposite films: one-step electrochemical synthesis, structural characterization and nanomechanical and photoluminescent properties

Three-dimensional (3D) hierarchically porous composite Cu-BiOCl films have been prepared by a facile one-step galvanostatic electrodeposition process from acidic electrolytic solutions containing Cu(ii) and Bi(iii) chloride salts and Triton X-100. The films show spherical, micron-sized pores that sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2013-01, Vol.5 (24), p.12542-12550
Hauptverfasser: Guerrero, Miguel, Pané, Salvador, Nelson, Bradley J, Baró, Maria Dolors, Roldán, Mònica, Sort, Jordi, Pellicer, Eva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three-dimensional (3D) hierarchically porous composite Cu-BiOCl films have been prepared by a facile one-step galvanostatic electrodeposition process from acidic electrolytic solutions containing Cu(ii) and Bi(iii) chloride salts and Triton X-100. The films show spherical, micron-sized pores that spread over the whole film thickness. In turn, the pore walls are made of randomly packed BiOCl nanoplates that are assembled leaving micro-nanopore voids beneath. It is believed that Cu grows within the interstitial spaces between the hydrogen bubbles produced from the reduction of H(+) ions. Then, the BiOCl sheets accommodate in the porous network defined by the Cu building blocks. The presence of Cu tends to enhance the mechanical stability of the composite material. The resulting porous Cu-BiOCl films exhibit homogeneous and stable-in-time photoluminescent response arising from the BiOCl component that spreads over the entire 3D porous structure, as demonstrated by confocal scanning laser microscopy. A broad-band emission covering the entire visible range, in the wavelength interval 450-750 nm, is obtained. The present work paves the way for the facile and controlled preparation of a new generation of photoluminescent membranes.
ISSN:2040-3364
2040-3372
DOI:10.1039/c3nr03491g