Thermal evolution of surface blistering and exfoliation due to ion-implanted hydrogen monomers into Si < 1 1 1>

This study investigated the dependence of surface blistering and exfoliation phenomena on post-annealing time in H+-implanted Si. Czochralski-grown n-type Si wafers were room-temperature ion-implanted with 40 keV hydrogen monomers to a fluence of 5x10 super(16) cm super(-2), and followed by furnace...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2012-08, Vol.407 (15), p.3020-3025
Hauptverfasser: LIANG, I. H, HU, C. H, BAI, C. Y, CHAO, D. S, LIN, C. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3025
container_issue 15
container_start_page 3020
container_title Physica. B, Condensed matter
container_volume 407
creator LIANG, I. H
HU, C. H
BAI, C. Y
CHAO, D. S
LIN, C. M
description This study investigated the dependence of surface blistering and exfoliation phenomena on post-annealing time in H+-implanted Si. Czochralski-grown n-type Si wafers were room-temperature ion-implanted with 40 keV hydrogen monomers to a fluence of 5x10 super(16) cm super(-2), and followed by furnace annealing treatments at 400 and 500 [deg]C for various durations ranging from 0.25 to 3 h. The corresponding analysis results for Si [1] (Liang et al., 2008); [2] (Bai, 2007) were adopted in order to make comparisons. The evolution of blister formation and growth for Si at 400 [deg]C has a shorter characteristic time compared to Si. However, there is a longer characteristic time when annealing takes place at 500 [deg]C. In addition, no craters were observed for Si annealed at 400 [deg]C while the opposite is true for Si. The evolution of crater development for Si .annealed at 500 [deg]C has a longer characteristic time compared to Si. These results are attributed to the fact that compared to Si, Si has a smaller surface binding energy of silicon atoms and a larger areal number density of silicon atoms on the plane perpendicular to the incident-ion axis. Furthermore, Si has a greater areal number density, smaller diameter, and a similar covered-area fraction of optically-detectable blisters compared to Si. However, Si has a lower areal number density and a smaller covered-area fraction of craters than does Si. Increasing post-annealing temperature from low (e.g. 400 [deg]C) to high (e.g. 500 [deg]C) revealed that Si tends to create more blisters while Si tends to develop larger blisters as well as create more craters.
doi_str_mv 10.1016/j.physb.2011.09.005
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671448460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671448460</sourcerecordid><originalsourceid>FETCH-LOGICAL-p251t-d928e25924aeb7f0d61a65d375434930c8dc7dbeca2f42fb2bd472ae89f4213a3</originalsourceid><addsrcrecordid>eNqFzk1LxDAQBuAgCq6rv8BLLoKX1kw-mhZEkMUvWPDgel7SZrqbpW1q0or77626d2cO8w48DEPIJbAUGGQ3u7Tf7mOZcgaQsiJlTB2RGeRaJByEOiYzVnBIpOLZKTmLccemAg0z4ldbDK1pKH76Zhyc76ivaRxDbSqkZePigMF1G2o6S_Gr9o0zv8qOSAdPp5i4tm9MN6Cl270NfoMdbX3nWwyRum5Cb47eUvjpu3NyUpsm4sVhzsn748Nq8ZwsX59eFvfLpOcKhsQWPEeuCi4NlrpmNgOTKSu0kkIWglW5rbQtsTK8lrwueWml5gbzYlpBGDEn1393--A_RozDunWxwmZ6FP0Y15BpkDKXGfufMpFzqTVXE706UBMr09TBdJWL6z641oT9mmesEEKB-AbBmXoH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038247725</pqid></control><display><type>article</type><title>Thermal evolution of surface blistering and exfoliation due to ion-implanted hydrogen monomers into Si &lt; 1 1 1&gt;</title><source>Elsevier ScienceDirect Journals Complete</source><creator>LIANG, I. H ; HU, C. H ; BAI, C. Y ; CHAO, D. S ; LIN, C. M</creator><creatorcontrib>LIANG, I. H ; HU, C. H ; BAI, C. Y ; CHAO, D. S ; LIN, C. M</creatorcontrib><description><![CDATA[This study investigated the dependence of surface blistering and exfoliation phenomena on post-annealing time in H+-implanted Si<1 1 1>. Czochralski-grown n-type Si<1 1 1> wafers were room-temperature ion-implanted with 40 keV hydrogen monomers to a fluence of 5x10 super(16) cm super(-2), and followed by furnace annealing treatments at 400 and 500 [deg]C for various durations ranging from 0.25 to 3 h. The corresponding analysis results for Si<1 0 0> [1] (Liang et al., 2008); [2] (Bai, 2007) were adopted in order to make comparisons. The evolution of blister formation and growth for Si<1 1 1> at 400 [deg]C has a shorter characteristic time compared to Si<1 0 0>. However, there is a longer characteristic time when annealing takes place at 500 [deg]C. In addition, no craters were observed for Si<1 1 1> annealed at 400 [deg]C while the opposite is true for Si<1 0 0>. The evolution of crater development for Si<1 1 1> .annealed at 500 [deg]C has a longer characteristic time compared to Si<1 0 0>. These results are attributed to the fact that compared to Si<1 0 0>, Si<1 1 1> has a smaller surface binding energy of silicon atoms and a larger areal number density of silicon atoms on the plane perpendicular to the incident-ion axis. Furthermore, Si<1 1 1> has a greater areal number density, smaller diameter, and a similar covered-area fraction of optically-detectable blisters compared to Si<1 0 0>. However, Si<1 1 1> has a lower areal number density and a smaller covered-area fraction of craters than does Si<1 0 0>. Increasing post-annealing temperature from low (e.g. 400 [deg]C) to high (e.g. 500 [deg]C) revealed that Si<1 1 1> tends to create more blisters while Si<1 0 0> tends to develop larger blisters as well as create more craters.]]></description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2011.09.005</identifier><language>eng</language><publisher>Kidlington: Elsevier</publisher><subject>Annealing ; Atomic properties ; Blistering ; Composition; defects and impurities ; Condensed matter: structure, mechanical and thermal properties ; Craters ; Density ; Evolution ; Exact sciences and technology ; Monomers ; Physics ; Silicon ; Solid surfaces and solid-solid interfaces ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Physica. B, Condensed matter, 2012-08, Vol.407 (15), p.3020-3025</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26093351$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>LIANG, I. H</creatorcontrib><creatorcontrib>HU, C. H</creatorcontrib><creatorcontrib>BAI, C. Y</creatorcontrib><creatorcontrib>CHAO, D. S</creatorcontrib><creatorcontrib>LIN, C. M</creatorcontrib><title>Thermal evolution of surface blistering and exfoliation due to ion-implanted hydrogen monomers into Si &lt; 1 1 1&gt;</title><title>Physica. B, Condensed matter</title><description><![CDATA[This study investigated the dependence of surface blistering and exfoliation phenomena on post-annealing time in H+-implanted Si<1 1 1>. Czochralski-grown n-type Si<1 1 1> wafers were room-temperature ion-implanted with 40 keV hydrogen monomers to a fluence of 5x10 super(16) cm super(-2), and followed by furnace annealing treatments at 400 and 500 [deg]C for various durations ranging from 0.25 to 3 h. The corresponding analysis results for Si<1 0 0> [1] (Liang et al., 2008); [2] (Bai, 2007) were adopted in order to make comparisons. The evolution of blister formation and growth for Si<1 1 1> at 400 [deg]C has a shorter characteristic time compared to Si<1 0 0>. However, there is a longer characteristic time when annealing takes place at 500 [deg]C. In addition, no craters were observed for Si<1 1 1> annealed at 400 [deg]C while the opposite is true for Si<1 0 0>. The evolution of crater development for Si<1 1 1> .annealed at 500 [deg]C has a longer characteristic time compared to Si<1 0 0>. These results are attributed to the fact that compared to Si<1 0 0>, Si<1 1 1> has a smaller surface binding energy of silicon atoms and a larger areal number density of silicon atoms on the plane perpendicular to the incident-ion axis. Furthermore, Si<1 1 1> has a greater areal number density, smaller diameter, and a similar covered-area fraction of optically-detectable blisters compared to Si<1 0 0>. However, Si<1 1 1> has a lower areal number density and a smaller covered-area fraction of craters than does Si<1 0 0>. Increasing post-annealing temperature from low (e.g. 400 [deg]C) to high (e.g. 500 [deg]C) revealed that Si<1 1 1> tends to create more blisters while Si<1 0 0> tends to develop larger blisters as well as create more craters.]]></description><subject>Annealing</subject><subject>Atomic properties</subject><subject>Blistering</subject><subject>Composition; defects and impurities</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Craters</subject><subject>Density</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Monomers</subject><subject>Physics</subject><subject>Silicon</subject><subject>Solid surfaces and solid-solid interfaces</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFzk1LxDAQBuAgCq6rv8BLLoKX1kw-mhZEkMUvWPDgel7SZrqbpW1q0or77626d2cO8w48DEPIJbAUGGQ3u7Tf7mOZcgaQsiJlTB2RGeRaJByEOiYzVnBIpOLZKTmLccemAg0z4ldbDK1pKH76Zhyc76ivaRxDbSqkZePigMF1G2o6S_Gr9o0zv8qOSAdPp5i4tm9MN6Cl270NfoMdbX3nWwyRum5Cb47eUvjpu3NyUpsm4sVhzsn748Nq8ZwsX59eFvfLpOcKhsQWPEeuCi4NlrpmNgOTKSu0kkIWglW5rbQtsTK8lrwueWml5gbzYlpBGDEn1393--A_RozDunWxwmZ6FP0Y15BpkDKXGfufMpFzqTVXE706UBMr09TBdJWL6z641oT9mmesEEKB-AbBmXoH</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>LIANG, I. H</creator><creator>HU, C. H</creator><creator>BAI, C. Y</creator><creator>CHAO, D. S</creator><creator>LIN, C. M</creator><general>Elsevier</general><scope>IQODW</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20120801</creationdate><title>Thermal evolution of surface blistering and exfoliation due to ion-implanted hydrogen monomers into Si &lt; 1 1 1&gt;</title><author>LIANG, I. H ; HU, C. H ; BAI, C. Y ; CHAO, D. S ; LIN, C. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p251t-d928e25924aeb7f0d61a65d375434930c8dc7dbeca2f42fb2bd472ae89f4213a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Annealing</topic><topic>Atomic properties</topic><topic>Blistering</topic><topic>Composition; defects and impurities</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Craters</topic><topic>Density</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Monomers</topic><topic>Physics</topic><topic>Silicon</topic><topic>Solid surfaces and solid-solid interfaces</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LIANG, I. H</creatorcontrib><creatorcontrib>HU, C. H</creatorcontrib><creatorcontrib>BAI, C. Y</creatorcontrib><creatorcontrib>CHAO, D. S</creatorcontrib><creatorcontrib>LIN, C. M</creatorcontrib><collection>Pascal-Francis</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LIANG, I. H</au><au>HU, C. H</au><au>BAI, C. Y</au><au>CHAO, D. S</au><au>LIN, C. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal evolution of surface blistering and exfoliation due to ion-implanted hydrogen monomers into Si &lt; 1 1 1&gt;</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2012-08-01</date><risdate>2012</risdate><volume>407</volume><issue>15</issue><spage>3020</spage><epage>3025</epage><pages>3020-3025</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract><![CDATA[This study investigated the dependence of surface blistering and exfoliation phenomena on post-annealing time in H+-implanted Si<1 1 1>. Czochralski-grown n-type Si<1 1 1> wafers were room-temperature ion-implanted with 40 keV hydrogen monomers to a fluence of 5x10 super(16) cm super(-2), and followed by furnace annealing treatments at 400 and 500 [deg]C for various durations ranging from 0.25 to 3 h. The corresponding analysis results for Si<1 0 0> [1] (Liang et al., 2008); [2] (Bai, 2007) were adopted in order to make comparisons. The evolution of blister formation and growth for Si<1 1 1> at 400 [deg]C has a shorter characteristic time compared to Si<1 0 0>. However, there is a longer characteristic time when annealing takes place at 500 [deg]C. In addition, no craters were observed for Si<1 1 1> annealed at 400 [deg]C while the opposite is true for Si<1 0 0>. The evolution of crater development for Si<1 1 1> .annealed at 500 [deg]C has a longer characteristic time compared to Si<1 0 0>. These results are attributed to the fact that compared to Si<1 0 0>, Si<1 1 1> has a smaller surface binding energy of silicon atoms and a larger areal number density of silicon atoms on the plane perpendicular to the incident-ion axis. Furthermore, Si<1 1 1> has a greater areal number density, smaller diameter, and a similar covered-area fraction of optically-detectable blisters compared to Si<1 0 0>. However, Si<1 1 1> has a lower areal number density and a smaller covered-area fraction of craters than does Si<1 0 0>. Increasing post-annealing temperature from low (e.g. 400 [deg]C) to high (e.g. 500 [deg]C) revealed that Si<1 1 1> tends to create more blisters while Si<1 0 0> tends to develop larger blisters as well as create more craters.]]></abstract><cop>Kidlington</cop><pub>Elsevier</pub><doi>10.1016/j.physb.2011.09.005</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2012-08, Vol.407 (15), p.3020-3025
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_miscellaneous_1671448460
source Elsevier ScienceDirect Journals Complete
subjects Annealing
Atomic properties
Blistering
Composition
defects and impurities
Condensed matter: structure, mechanical and thermal properties
Craters
Density
Evolution
Exact sciences and technology
Monomers
Physics
Silicon
Solid surfaces and solid-solid interfaces
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
title Thermal evolution of surface blistering and exfoliation due to ion-implanted hydrogen monomers into Si < 1 1 1>
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20evolution%20of%20surface%20blistering%20and%20exfoliation%20due%20to%20ion-implanted%20hydrogen%20monomers%20into%20Si%20%3C%201%201%201%3E&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=LIANG,%20I.%20H&rft.date=2012-08-01&rft.volume=407&rft.issue=15&rft.spage=3020&rft.epage=3025&rft.pages=3020-3025&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2011.09.005&rft_dat=%3Cproquest_pasca%3E1671448460%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038247725&rft_id=info:pmid/&rfr_iscdi=true