Discontinuous Galerkin method for two-component liquid–gas porous media flows

We consider two-component (typically, water and hydrogen) compressible liquid–gas porous media flows including mass exchange between phases possibly leading to gas-phase (dis)appearance, as motivated by hydrogen production in underground repositories of radioactive waste. Following recent work by Bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational geosciences 2012-06, Vol.16 (3), p.677-690
Hauptverfasser: Ern, Alexandre, Mozolevski, Igor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 690
container_issue 3
container_start_page 677
container_title Computational geosciences
container_volume 16
creator Ern, Alexandre
Mozolevski, Igor
description We consider two-component (typically, water and hydrogen) compressible liquid–gas porous media flows including mass exchange between phases possibly leading to gas-phase (dis)appearance, as motivated by hydrogen production in underground repositories of radioactive waste. Following recent work by Bourgeat, Jurak, and Smaï, we formulate the governing equations in terms of liquid pressure and dissolved hydrogen density as main unknowns, leading mathematically to a nonlinear elliptic–parabolic system of partial differential equations, in which the equations degenerate when the gas phase disappears. We develop a discontinuous Galerkin method for space discretization, combined with a backward Euler scheme for time discretization and an incomplete Newton method for linearization. Numerical examples deal with gas-phase (dis)appearance, ill-prepared initial conditions, and heterogeneous problem with different rock types.
doi_str_mv 10.1007/s10596-012-9277-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671448377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651143541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-f0f10da88ab3d372e71395f63c6132a5876cf042e6a90a86ec5617f31e63b0633</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyRWFgMvjix4xEVKEiVusBsuYldUhI7tRMhNt6BN-RJcBQGhMR0N3z_6b8PoXMgV0AIvw5AcsEwgRSLlHNMD9AMck4xZEIcxj1LCY4IP0YnIewIIYJTmKH1bR1KZ_vaDm4IyVI12r_WNml1_-KqxDif9G8Ol67tnNW2T5p6P9TV18fnVoWkc35MtbqqVWIa9xZO0ZFRTdBnP3OOnu_vnhYPeLVePi5uVrikmeixIQZIpYpCbWhFeao5UJEbRksGNFV5wVlpSJZqpgRRBdNlzoAbCprRDWGUztHldLfzbj_o0Ms2PqKbRlkdK0lgHLKsoJxH9OIPunODt7GdBAJEMBrJSMFEld6F4LWRna9b5d8jJEfFclIso2I5KpZjiXTKhMjarfa_L_8X-gau937p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010963144</pqid></control><display><type>article</type><title>Discontinuous Galerkin method for two-component liquid–gas porous media flows</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ern, Alexandre ; Mozolevski, Igor</creator><creatorcontrib>Ern, Alexandre ; Mozolevski, Igor</creatorcontrib><description>We consider two-component (typically, water and hydrogen) compressible liquid–gas porous media flows including mass exchange between phases possibly leading to gas-phase (dis)appearance, as motivated by hydrogen production in underground repositories of radioactive waste. Following recent work by Bourgeat, Jurak, and Smaï, we formulate the governing equations in terms of liquid pressure and dissolved hydrogen density as main unknowns, leading mathematically to a nonlinear elliptic–parabolic system of partial differential equations, in which the equations degenerate when the gas phase disappears. We develop a discontinuous Galerkin method for space discretization, combined with a backward Euler scheme for time discretization and an incomplete Newton method for linearization. Numerical examples deal with gas-phase (dis)appearance, ill-prepared initial conditions, and heterogeneous problem with different rock types.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-012-9277-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Density ; Differential equations ; Discretization ; Dissolution ; Earth and Environmental Science ; Earth Sciences ; Galerkin methods ; Gases ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogen production ; Hydrogeology ; Initial conditions ; Liquids ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Original Paper ; Phase transitions ; Porous materials ; Porous media ; Radioactive wastes ; Rock ; Soil Science &amp; Conservation</subject><ispartof>Computational geosciences, 2012-06, Vol.16 (3), p.677-690</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-f0f10da88ab3d372e71395f63c6132a5876cf042e6a90a86ec5617f31e63b0633</citedby><cites>FETCH-LOGICAL-c349t-f0f10da88ab3d372e71395f63c6132a5876cf042e6a90a86ec5617f31e63b0633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10596-012-9277-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10596-012-9277-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Ern, Alexandre</creatorcontrib><creatorcontrib>Mozolevski, Igor</creatorcontrib><title>Discontinuous Galerkin method for two-component liquid–gas porous media flows</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>We consider two-component (typically, water and hydrogen) compressible liquid–gas porous media flows including mass exchange between phases possibly leading to gas-phase (dis)appearance, as motivated by hydrogen production in underground repositories of radioactive waste. Following recent work by Bourgeat, Jurak, and Smaï, we formulate the governing equations in terms of liquid pressure and dissolved hydrogen density as main unknowns, leading mathematically to a nonlinear elliptic–parabolic system of partial differential equations, in which the equations degenerate when the gas phase disappears. We develop a discontinuous Galerkin method for space discretization, combined with a backward Euler scheme for time discretization and an incomplete Newton method for linearization. Numerical examples deal with gas-phase (dis)appearance, ill-prepared initial conditions, and heterogeneous problem with different rock types.</description><subject>Density</subject><subject>Differential equations</subject><subject>Discretization</subject><subject>Dissolution</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Galerkin methods</subject><subject>Gases</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogen production</subject><subject>Hydrogeology</subject><subject>Initial conditions</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Original Paper</subject><subject>Phase transitions</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Radioactive wastes</subject><subject>Rock</subject><subject>Soil Science &amp; Conservation</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLFOwzAQhi0EEqXwAGyRWFgMvjix4xEVKEiVusBsuYldUhI7tRMhNt6BN-RJcBQGhMR0N3z_6b8PoXMgV0AIvw5AcsEwgRSLlHNMD9AMck4xZEIcxj1LCY4IP0YnIewIIYJTmKH1bR1KZ_vaDm4IyVI12r_WNml1_-KqxDif9G8Ol67tnNW2T5p6P9TV18fnVoWkc35MtbqqVWIa9xZO0ZFRTdBnP3OOnu_vnhYPeLVePi5uVrikmeixIQZIpYpCbWhFeao5UJEbRksGNFV5wVlpSJZqpgRRBdNlzoAbCprRDWGUztHldLfzbj_o0Ms2PqKbRlkdK0lgHLKsoJxH9OIPunODt7GdBAJEMBrJSMFEld6F4LWRna9b5d8jJEfFclIso2I5KpZjiXTKhMjarfa_L_8X-gau937p</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Ern, Alexandre</creator><creator>Mozolevski, Igor</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20120601</creationdate><title>Discontinuous Galerkin method for two-component liquid–gas porous media flows</title><author>Ern, Alexandre ; Mozolevski, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-f0f10da88ab3d372e71395f63c6132a5876cf042e6a90a86ec5617f31e63b0633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Density</topic><topic>Differential equations</topic><topic>Discretization</topic><topic>Dissolution</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Galerkin methods</topic><topic>Gases</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogen production</topic><topic>Hydrogeology</topic><topic>Initial conditions</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Original Paper</topic><topic>Phase transitions</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Radioactive wastes</topic><topic>Rock</topic><topic>Soil Science &amp; Conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ern, Alexandre</creatorcontrib><creatorcontrib>Mozolevski, Igor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ern, Alexandre</au><au>Mozolevski, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discontinuous Galerkin method for two-component liquid–gas porous media flows</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>16</volume><issue>3</issue><spage>677</spage><epage>690</epage><pages>677-690</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>We consider two-component (typically, water and hydrogen) compressible liquid–gas porous media flows including mass exchange between phases possibly leading to gas-phase (dis)appearance, as motivated by hydrogen production in underground repositories of radioactive waste. Following recent work by Bourgeat, Jurak, and Smaï, we formulate the governing equations in terms of liquid pressure and dissolved hydrogen density as main unknowns, leading mathematically to a nonlinear elliptic–parabolic system of partial differential equations, in which the equations degenerate when the gas phase disappears. We develop a discontinuous Galerkin method for space discretization, combined with a backward Euler scheme for time discretization and an incomplete Newton method for linearization. Numerical examples deal with gas-phase (dis)appearance, ill-prepared initial conditions, and heterogeneous problem with different rock types.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10596-012-9277-3</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1420-0597
ispartof Computational geosciences, 2012-06, Vol.16 (3), p.677-690
issn 1420-0597
1573-1499
language eng
recordid cdi_proquest_miscellaneous_1671448377
source SpringerLink Journals - AutoHoldings
subjects Density
Differential equations
Discretization
Dissolution
Earth and Environmental Science
Earth Sciences
Galerkin methods
Gases
Geotechnical Engineering & Applied Earth Sciences
Hydrogen production
Hydrogeology
Initial conditions
Liquids
Mathematical analysis
Mathematical Modeling and Industrial Mathematics
Original Paper
Phase transitions
Porous materials
Porous media
Radioactive wastes
Rock
Soil Science & Conservation
title Discontinuous Galerkin method for two-component liquid–gas porous media flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discontinuous%20Galerkin%20method%20for%20two-component%20liquid%E2%80%93gas%20porous%20media%20flows&rft.jtitle=Computational%20geosciences&rft.au=Ern,%20Alexandre&rft.date=2012-06-01&rft.volume=16&rft.issue=3&rft.spage=677&rft.epage=690&rft.pages=677-690&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-012-9277-3&rft_dat=%3Cproquest_cross%3E2651143541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010963144&rft_id=info:pmid/&rfr_iscdi=true