Discontinuous Galerkin method for two-component liquid–gas porous media flows
We consider two-component (typically, water and hydrogen) compressible liquid–gas porous media flows including mass exchange between phases possibly leading to gas-phase (dis)appearance, as motivated by hydrogen production in underground repositories of radioactive waste. Following recent work by Bo...
Gespeichert in:
Veröffentlicht in: | Computational geosciences 2012-06, Vol.16 (3), p.677-690 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 690 |
---|---|
container_issue | 3 |
container_start_page | 677 |
container_title | Computational geosciences |
container_volume | 16 |
creator | Ern, Alexandre Mozolevski, Igor |
description | We consider two-component (typically, water and hydrogen) compressible liquid–gas porous media flows including mass exchange between phases possibly leading to gas-phase (dis)appearance, as motivated by hydrogen production in underground repositories of radioactive waste. Following recent work by Bourgeat, Jurak, and Smaï, we formulate the governing equations in terms of liquid pressure and dissolved hydrogen density as main unknowns, leading mathematically to a nonlinear elliptic–parabolic system of partial differential equations, in which the equations degenerate when the gas phase disappears. We develop a discontinuous Galerkin method for space discretization, combined with a backward Euler scheme for time discretization and an incomplete Newton method for linearization. Numerical examples deal with gas-phase (dis)appearance, ill-prepared initial conditions, and heterogeneous problem with different rock types. |
doi_str_mv | 10.1007/s10596-012-9277-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671448377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651143541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-f0f10da88ab3d372e71395f63c6132a5876cf042e6a90a86ec5617f31e63b0633</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyRWFgMvjix4xEVKEiVusBsuYldUhI7tRMhNt6BN-RJcBQGhMR0N3z_6b8PoXMgV0AIvw5AcsEwgRSLlHNMD9AMck4xZEIcxj1LCY4IP0YnIewIIYJTmKH1bR1KZ_vaDm4IyVI12r_WNml1_-KqxDif9G8Ol67tnNW2T5p6P9TV18fnVoWkc35MtbqqVWIa9xZO0ZFRTdBnP3OOnu_vnhYPeLVePi5uVrikmeixIQZIpYpCbWhFeao5UJEbRksGNFV5wVlpSJZqpgRRBdNlzoAbCprRDWGUztHldLfzbj_o0Ms2PqKbRlkdK0lgHLKsoJxH9OIPunODt7GdBAJEMBrJSMFEld6F4LWRna9b5d8jJEfFclIso2I5KpZjiXTKhMjarfa_L_8X-gau937p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010963144</pqid></control><display><type>article</type><title>Discontinuous Galerkin method for two-component liquid–gas porous media flows</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ern, Alexandre ; Mozolevski, Igor</creator><creatorcontrib>Ern, Alexandre ; Mozolevski, Igor</creatorcontrib><description>We consider two-component (typically, water and hydrogen) compressible liquid–gas porous media flows including mass exchange between phases possibly leading to gas-phase (dis)appearance, as motivated by hydrogen production in underground repositories of radioactive waste. Following recent work by Bourgeat, Jurak, and Smaï, we formulate the governing equations in terms of liquid pressure and dissolved hydrogen density as main unknowns, leading mathematically to a nonlinear elliptic–parabolic system of partial differential equations, in which the equations degenerate when the gas phase disappears. We develop a discontinuous Galerkin method for space discretization, combined with a backward Euler scheme for time discretization and an incomplete Newton method for linearization. Numerical examples deal with gas-phase (dis)appearance, ill-prepared initial conditions, and heterogeneous problem with different rock types.</description><identifier>ISSN: 1420-0597</identifier><identifier>EISSN: 1573-1499</identifier><identifier>DOI: 10.1007/s10596-012-9277-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Density ; Differential equations ; Discretization ; Dissolution ; Earth and Environmental Science ; Earth Sciences ; Galerkin methods ; Gases ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogen production ; Hydrogeology ; Initial conditions ; Liquids ; Mathematical analysis ; Mathematical Modeling and Industrial Mathematics ; Original Paper ; Phase transitions ; Porous materials ; Porous media ; Radioactive wastes ; Rock ; Soil Science & Conservation</subject><ispartof>Computational geosciences, 2012-06, Vol.16 (3), p.677-690</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-f0f10da88ab3d372e71395f63c6132a5876cf042e6a90a86ec5617f31e63b0633</citedby><cites>FETCH-LOGICAL-c349t-f0f10da88ab3d372e71395f63c6132a5876cf042e6a90a86ec5617f31e63b0633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10596-012-9277-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10596-012-9277-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Ern, Alexandre</creatorcontrib><creatorcontrib>Mozolevski, Igor</creatorcontrib><title>Discontinuous Galerkin method for two-component liquid–gas porous media flows</title><title>Computational geosciences</title><addtitle>Comput Geosci</addtitle><description>We consider two-component (typically, water and hydrogen) compressible liquid–gas porous media flows including mass exchange between phases possibly leading to gas-phase (dis)appearance, as motivated by hydrogen production in underground repositories of radioactive waste. Following recent work by Bourgeat, Jurak, and Smaï, we formulate the governing equations in terms of liquid pressure and dissolved hydrogen density as main unknowns, leading mathematically to a nonlinear elliptic–parabolic system of partial differential equations, in which the equations degenerate when the gas phase disappears. We develop a discontinuous Galerkin method for space discretization, combined with a backward Euler scheme for time discretization and an incomplete Newton method for linearization. Numerical examples deal with gas-phase (dis)appearance, ill-prepared initial conditions, and heterogeneous problem with different rock types.</description><subject>Density</subject><subject>Differential equations</subject><subject>Discretization</subject><subject>Dissolution</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Galerkin methods</subject><subject>Gases</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogen production</subject><subject>Hydrogeology</subject><subject>Initial conditions</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Original Paper</subject><subject>Phase transitions</subject><subject>Porous materials</subject><subject>Porous media</subject><subject>Radioactive wastes</subject><subject>Rock</subject><subject>Soil Science & Conservation</subject><issn>1420-0597</issn><issn>1573-1499</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kLFOwzAQhi0EEqXwAGyRWFgMvjix4xEVKEiVusBsuYldUhI7tRMhNt6BN-RJcBQGhMR0N3z_6b8PoXMgV0AIvw5AcsEwgRSLlHNMD9AMck4xZEIcxj1LCY4IP0YnIewIIYJTmKH1bR1KZ_vaDm4IyVI12r_WNml1_-KqxDif9G8Ol67tnNW2T5p6P9TV18fnVoWkc35MtbqqVWIa9xZO0ZFRTdBnP3OOnu_vnhYPeLVePi5uVrikmeixIQZIpYpCbWhFeao5UJEbRksGNFV5wVlpSJZqpgRRBdNlzoAbCprRDWGUztHldLfzbj_o0Ms2PqKbRlkdK0lgHLKsoJxH9OIPunODt7GdBAJEMBrJSMFEld6F4LWRna9b5d8jJEfFclIso2I5KpZjiXTKhMjarfa_L_8X-gau937p</recordid><startdate>20120601</startdate><enddate>20120601</enddate><creator>Ern, Alexandre</creator><creator>Mozolevski, Igor</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20120601</creationdate><title>Discontinuous Galerkin method for two-component liquid–gas porous media flows</title><author>Ern, Alexandre ; Mozolevski, Igor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-f0f10da88ab3d372e71395f63c6132a5876cf042e6a90a86ec5617f31e63b0633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Density</topic><topic>Differential equations</topic><topic>Discretization</topic><topic>Dissolution</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Galerkin methods</topic><topic>Gases</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogen production</topic><topic>Hydrogeology</topic><topic>Initial conditions</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Original Paper</topic><topic>Phase transitions</topic><topic>Porous materials</topic><topic>Porous media</topic><topic>Radioactive wastes</topic><topic>Rock</topic><topic>Soil Science & Conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ern, Alexandre</creatorcontrib><creatorcontrib>Mozolevski, Igor</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ern, Alexandre</au><au>Mozolevski, Igor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discontinuous Galerkin method for two-component liquid–gas porous media flows</atitle><jtitle>Computational geosciences</jtitle><stitle>Comput Geosci</stitle><date>2012-06-01</date><risdate>2012</risdate><volume>16</volume><issue>3</issue><spage>677</spage><epage>690</epage><pages>677-690</pages><issn>1420-0597</issn><eissn>1573-1499</eissn><abstract>We consider two-component (typically, water and hydrogen) compressible liquid–gas porous media flows including mass exchange between phases possibly leading to gas-phase (dis)appearance, as motivated by hydrogen production in underground repositories of radioactive waste. Following recent work by Bourgeat, Jurak, and Smaï, we formulate the governing equations in terms of liquid pressure and dissolved hydrogen density as main unknowns, leading mathematically to a nonlinear elliptic–parabolic system of partial differential equations, in which the equations degenerate when the gas phase disappears. We develop a discontinuous Galerkin method for space discretization, combined with a backward Euler scheme for time discretization and an incomplete Newton method for linearization. Numerical examples deal with gas-phase (dis)appearance, ill-prepared initial conditions, and heterogeneous problem with different rock types.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10596-012-9277-3</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-0597 |
ispartof | Computational geosciences, 2012-06, Vol.16 (3), p.677-690 |
issn | 1420-0597 1573-1499 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671448377 |
source | SpringerLink Journals - AutoHoldings |
subjects | Density Differential equations Discretization Dissolution Earth and Environmental Science Earth Sciences Galerkin methods Gases Geotechnical Engineering & Applied Earth Sciences Hydrogen production Hydrogeology Initial conditions Liquids Mathematical analysis Mathematical Modeling and Industrial Mathematics Original Paper Phase transitions Porous materials Porous media Radioactive wastes Rock Soil Science & Conservation |
title | Discontinuous Galerkin method for two-component liquid–gas porous media flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discontinuous%20Galerkin%20method%20for%20two-component%20liquid%E2%80%93gas%20porous%20media%20flows&rft.jtitle=Computational%20geosciences&rft.au=Ern,%20Alexandre&rft.date=2012-06-01&rft.volume=16&rft.issue=3&rft.spage=677&rft.epage=690&rft.pages=677-690&rft.issn=1420-0597&rft.eissn=1573-1499&rft_id=info:doi/10.1007/s10596-012-9277-3&rft_dat=%3Cproquest_cross%3E2651143541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010963144&rft_id=info:pmid/&rfr_iscdi=true |