Time-Variant Reliability Analysis of Unsaturated Soil Slopes Under Rainfall
Time-variant reliability analysis for a typical unsaturated soil slope is performed. Eight rainfall conditions are considered, and three slope models are set up for studying the influence of shear strength parameters, hydraulic conductivity parameters, rainfall intensity and duration on the reliabil...
Gespeichert in:
Veröffentlicht in: | Geotechnical and geological engineering 2013-02, Vol.31 (1), p.319-327 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 327 |
---|---|
container_issue | 1 |
container_start_page | 319 |
container_title | Geotechnical and geological engineering |
container_volume | 31 |
creator | Tan, Xiao-hui Hu, Na Li, Dan Shen, Meng-fen Hou, Xiao-liang |
description | Time-variant reliability analysis for a typical unsaturated soil slope is performed. Eight rainfall conditions are considered, and three slope models are set up for studying the influence of shear strength parameters, hydraulic conductivity parameters, rainfall intensity and duration on the reliability of the soil slope. Sensitivity analysis shows that when the saturated hydraulic conductivity (
k
s
) is very small, the variation of hydraulic conductivity has little effect on the reliability index (β). For saving the computation effort, only the shear strength parameters are needed in performing the reliability analysis in this condition. With the increase of
k
s
, the importance of hydraulic conductivity becomes large. The reliability index of the soil slope is changing with time (
t
), and the shape of β–
t
curves for different slope model is quite different for they depend on the value of
k
s
. When
k
s
is very small, β keeps decreasing for all the 18 simulation days. With the increase of
k
s
, β decreases to its minimum value at about the cessation day of rainfall events, and it then increases gradually due to the redistribution of suction in the soil slope. |
doi_str_mv | 10.1007/s10706-012-9565-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671446295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671446295</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-afe159f9c27218ed1122829eeef17a53c65bb4d586b6558040d848be4bc65eef3</originalsourceid><addsrcrecordid>eNqFkctKBDEQRYMoOD4-wF2DGzfRqkzntRTxhYIwPrYhPV0tkUz3mPQs5u_NMIIgiKuCqnPvog5jJwjnCKAvMoIGxQEFt1JJrnfYBKWecpTC7rIJWAV8ikbss4OcPwBAKMAJe3gJC-JvPgXfj9WMYvBNiGFcV5e9j-sccjV01Wuf_bhKfqS2eh5CrJ7jsKRc9i2lauZD3_kYj9heGZmOv-che725frm6449Pt_dXl4_c1yBH7jtCaTs7F1qgoRZRCCMsEXWovZzOlWyaupVGNUpKAzW0pjYN1U25FGh6yM62vcs0fK4oj24R8pxi9D0Nq-xQaaxrJaz8H62FNVKB3qCnv9CPYZXKE7ITQlptlRFQKNxS8zTknKhzyxQWPq0dgtuYcFsTrphwGxNOl4zYZnJh-3dKP81_h74AA-2KBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259796820</pqid></control><display><type>article</type><title>Time-Variant Reliability Analysis of Unsaturated Soil Slopes Under Rainfall</title><source>SpringerLink Journals</source><creator>Tan, Xiao-hui ; Hu, Na ; Li, Dan ; Shen, Meng-fen ; Hou, Xiao-liang</creator><creatorcontrib>Tan, Xiao-hui ; Hu, Na ; Li, Dan ; Shen, Meng-fen ; Hou, Xiao-liang</creatorcontrib><description>Time-variant reliability analysis for a typical unsaturated soil slope is performed. Eight rainfall conditions are considered, and three slope models are set up for studying the influence of shear strength parameters, hydraulic conductivity parameters, rainfall intensity and duration on the reliability of the soil slope. Sensitivity analysis shows that when the saturated hydraulic conductivity (
k
s
) is very small, the variation of hydraulic conductivity has little effect on the reliability index (β). For saving the computation effort, only the shear strength parameters are needed in performing the reliability analysis in this condition. With the increase of
k
s
, the importance of hydraulic conductivity becomes large. The reliability index of the soil slope is changing with time (
t
), and the shape of β–
t
curves for different slope model is quite different for they depend on the value of
k
s
. When
k
s
is very small, β keeps decreasing for all the 18 simulation days. With the increase of
k
s
, β decreases to its minimum value at about the cessation day of rainfall events, and it then increases gradually due to the redistribution of suction in the soil slope.</description><identifier>ISSN: 0960-3182</identifier><identifier>EISSN: 1573-1529</identifier><identifier>DOI: 10.1007/s10706-012-9565-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Civil Engineering ; Computation ; Computational fluid dynamics ; Computer simulation ; Duration ; Earth and Environmental Science ; Earth Sciences ; Fluid flow ; Geotechnical Engineering & Applied Earth Sciences ; Hydraulic conductivity ; Hydraulics ; Hydrogeology ; Mathematical models ; Parameters ; Rain ; Rainfall ; Rainfall intensity ; Reliability ; Reliability analysis ; Reliability aspects ; Sensitivity analysis ; Shear strength ; Slope ; Slopes ; Soil ; Soil (material) ; Soil analysis ; Soil suction ; Soils ; Technical Note ; Terrestrial Pollution ; Unsaturated soils ; Waste Management/Waste Technology</subject><ispartof>Geotechnical and geological engineering, 2013-02, Vol.31 (1), p.319-327</ispartof><rights>Springer Science+Business Media Dordrecht 2012</rights><rights>Geotechnical and Geological Engineering is a copyright of Springer, (2012). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-afe159f9c27218ed1122829eeef17a53c65bb4d586b6558040d848be4bc65eef3</citedby><cites>FETCH-LOGICAL-a405t-afe159f9c27218ed1122829eeef17a53c65bb4d586b6558040d848be4bc65eef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10706-012-9565-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10706-012-9565-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tan, Xiao-hui</creatorcontrib><creatorcontrib>Hu, Na</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Shen, Meng-fen</creatorcontrib><creatorcontrib>Hou, Xiao-liang</creatorcontrib><title>Time-Variant Reliability Analysis of Unsaturated Soil Slopes Under Rainfall</title><title>Geotechnical and geological engineering</title><addtitle>Geotech Geol Eng</addtitle><description>Time-variant reliability analysis for a typical unsaturated soil slope is performed. Eight rainfall conditions are considered, and three slope models are set up for studying the influence of shear strength parameters, hydraulic conductivity parameters, rainfall intensity and duration on the reliability of the soil slope. Sensitivity analysis shows that when the saturated hydraulic conductivity (
k
s
) is very small, the variation of hydraulic conductivity has little effect on the reliability index (β). For saving the computation effort, only the shear strength parameters are needed in performing the reliability analysis in this condition. With the increase of
k
s
, the importance of hydraulic conductivity becomes large. The reliability index of the soil slope is changing with time (
t
), and the shape of β–
t
curves for different slope model is quite different for they depend on the value of
k
s
. When
k
s
is very small, β keeps decreasing for all the 18 simulation days. With the increase of
k
s
, β decreases to its minimum value at about the cessation day of rainfall events, and it then increases gradually due to the redistribution of suction in the soil slope.</description><subject>Analysis</subject><subject>Civil Engineering</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Duration</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluid flow</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydraulic conductivity</subject><subject>Hydraulics</subject><subject>Hydrogeology</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall intensity</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Reliability aspects</subject><subject>Sensitivity analysis</subject><subject>Shear strength</subject><subject>Slope</subject><subject>Slopes</subject><subject>Soil</subject><subject>Soil (material)</subject><subject>Soil analysis</subject><subject>Soil suction</subject><subject>Soils</subject><subject>Technical Note</subject><subject>Terrestrial Pollution</subject><subject>Unsaturated soils</subject><subject>Waste Management/Waste Technology</subject><issn>0960-3182</issn><issn>1573-1529</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkctKBDEQRYMoOD4-wF2DGzfRqkzntRTxhYIwPrYhPV0tkUz3mPQs5u_NMIIgiKuCqnPvog5jJwjnCKAvMoIGxQEFt1JJrnfYBKWecpTC7rIJWAV8ikbss4OcPwBAKMAJe3gJC-JvPgXfj9WMYvBNiGFcV5e9j-sccjV01Wuf_bhKfqS2eh5CrJ7jsKRc9i2lauZD3_kYj9heGZmOv-che725frm6449Pt_dXl4_c1yBH7jtCaTs7F1qgoRZRCCMsEXWovZzOlWyaupVGNUpKAzW0pjYN1U25FGh6yM62vcs0fK4oj24R8pxi9D0Nq-xQaaxrJaz8H62FNVKB3qCnv9CPYZXKE7ITQlptlRFQKNxS8zTknKhzyxQWPq0dgtuYcFsTrphwGxNOl4zYZnJh-3dKP81_h74AA-2KBA</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Tan, Xiao-hui</creator><creator>Hu, Na</creator><creator>Li, Dan</creator><creator>Shen, Meng-fen</creator><creator>Hou, Xiao-liang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QH</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130201</creationdate><title>Time-Variant Reliability Analysis of Unsaturated Soil Slopes Under Rainfall</title><author>Tan, Xiao-hui ; Hu, Na ; Li, Dan ; Shen, Meng-fen ; Hou, Xiao-liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-afe159f9c27218ed1122829eeef17a53c65bb4d586b6558040d848be4bc65eef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Civil Engineering</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Duration</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluid flow</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydraulic conductivity</topic><topic>Hydraulics</topic><topic>Hydrogeology</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall intensity</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Reliability aspects</topic><topic>Sensitivity analysis</topic><topic>Shear strength</topic><topic>Slope</topic><topic>Slopes</topic><topic>Soil</topic><topic>Soil (material)</topic><topic>Soil analysis</topic><topic>Soil suction</topic><topic>Soils</topic><topic>Technical Note</topic><topic>Terrestrial Pollution</topic><topic>Unsaturated soils</topic><topic>Waste Management/Waste Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Xiao-hui</creatorcontrib><creatorcontrib>Hu, Na</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Shen, Meng-fen</creatorcontrib><creatorcontrib>Hou, Xiao-liang</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aqualine</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Geotechnical and geological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Xiao-hui</au><au>Hu, Na</au><au>Li, Dan</au><au>Shen, Meng-fen</au><au>Hou, Xiao-liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Variant Reliability Analysis of Unsaturated Soil Slopes Under Rainfall</atitle><jtitle>Geotechnical and geological engineering</jtitle><stitle>Geotech Geol Eng</stitle><date>2013-02-01</date><risdate>2013</risdate><volume>31</volume><issue>1</issue><spage>319</spage><epage>327</epage><pages>319-327</pages><issn>0960-3182</issn><eissn>1573-1529</eissn><abstract>Time-variant reliability analysis for a typical unsaturated soil slope is performed. Eight rainfall conditions are considered, and three slope models are set up for studying the influence of shear strength parameters, hydraulic conductivity parameters, rainfall intensity and duration on the reliability of the soil slope. Sensitivity analysis shows that when the saturated hydraulic conductivity (
k
s
) is very small, the variation of hydraulic conductivity has little effect on the reliability index (β). For saving the computation effort, only the shear strength parameters are needed in performing the reliability analysis in this condition. With the increase of
k
s
, the importance of hydraulic conductivity becomes large. The reliability index of the soil slope is changing with time (
t
), and the shape of β–
t
curves for different slope model is quite different for they depend on the value of
k
s
. When
k
s
is very small, β keeps decreasing for all the 18 simulation days. With the increase of
k
s
, β decreases to its minimum value at about the cessation day of rainfall events, and it then increases gradually due to the redistribution of suction in the soil slope.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10706-012-9565-7</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-3182 |
ispartof | Geotechnical and geological engineering, 2013-02, Vol.31 (1), p.319-327 |
issn | 0960-3182 1573-1529 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671446295 |
source | SpringerLink Journals |
subjects | Analysis Civil Engineering Computation Computational fluid dynamics Computer simulation Duration Earth and Environmental Science Earth Sciences Fluid flow Geotechnical Engineering & Applied Earth Sciences Hydraulic conductivity Hydraulics Hydrogeology Mathematical models Parameters Rain Rainfall Rainfall intensity Reliability Reliability analysis Reliability aspects Sensitivity analysis Shear strength Slope Slopes Soil Soil (material) Soil analysis Soil suction Soils Technical Note Terrestrial Pollution Unsaturated soils Waste Management/Waste Technology |
title | Time-Variant Reliability Analysis of Unsaturated Soil Slopes Under Rainfall |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Variant%20Reliability%20Analysis%20of%20Unsaturated%20Soil%20Slopes%20Under%20Rainfall&rft.jtitle=Geotechnical%20and%20geological%20engineering&rft.au=Tan,%20Xiao-hui&rft.date=2013-02-01&rft.volume=31&rft.issue=1&rft.spage=319&rft.epage=327&rft.pages=319-327&rft.issn=0960-3182&rft.eissn=1573-1529&rft_id=info:doi/10.1007/s10706-012-9565-7&rft_dat=%3Cproquest_cross%3E1671446295%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259796820&rft_id=info:pmid/&rfr_iscdi=true |