A Rational Krylov Method Based on Hermite Interpolation for Nonlinear Eigenvalue Problems

This paper proposes a new rational Krylov method for solving the nonlinear eigenvalue problem: $A(\lambda)x = 0$. The method approximates $A(\lambda)$ by Hermite interpolation where the degree of the interpolating polynomial and the interpolation points are not fixed in advance. It uses a companion-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2013-01, Vol.35 (1), p.A327-A350
Hauptverfasser: Van Beeumen, Roel, Meerbergen, Karl, Michiels, Wim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page A350
container_issue 1
container_start_page A327
container_title SIAM journal on scientific computing
container_volume 35
creator Van Beeumen, Roel
Meerbergen, Karl
Michiels, Wim
description This paper proposes a new rational Krylov method for solving the nonlinear eigenvalue problem: $A(\lambda)x = 0$. The method approximates $A(\lambda)$ by Hermite interpolation where the degree of the interpolating polynomial and the interpolation points are not fixed in advance. It uses a companion-type reformulation to obtain a linear generalized eigenvalue problem (GEP). To this GEP we apply a rational Krylov method that preserves the structure. The companion form grows in each iteration and the interpolation points are dynamically chosen. Each iteration requires a linear system solve with $A(\sigma)$, where $\sigma$ is the last interpolation point. The method is illustrated by small- and large-scale numerical examples. In particular, we illustrate that the method is fully dynamic and can be used as a global search method as well as a local refinement method. In the last case, we compare the method to Newton's method and illustrate that we can achieve an even faster convergence rate. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/120877556
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671446139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2865664041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-ecddbfba8e108d2f41a27ea7b9dc3b4ad61c376fc8212ead00bcbab27f3e1423</originalsourceid><addsrcrecordid>eNpd0L1OwzAUBeAIgUQpDLyBJRYYAr62YydjQYVWlB-hLkyR49xAKicudlKpb09KEQPTOcOnK90TRedArwG4ugFGU6WSRB5EI6BZEivI1OGuSxGnTCXH0UkIK0pBioyNovcJedNd7VptyaPfWrchT9h9upLc6oAlcS2ZoW_qDsm87dCvnf3hpHKePLvW1i1qT6b1B7YbbXskr94VFptwGh1V2gY8-81xtLyfLu9m8eLlYX43WcSGZ9DFaMqyqAqdItC0ZJUAzRRqVWSl4YXQpQTDlaxMyoChLiktTKELpiqOIBgfR5f7s2vvvnoMXd7UwaC1ukXXhxykAiEk8GygF__oyvV--HxQTGYiA8GTQV3tlfEuBI9VvvZ1o_02B5rvNs7_NubflWhupA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1269491435</pqid></control><display><type>article</type><title>A Rational Krylov Method Based on Hermite Interpolation for Nonlinear Eigenvalue Problems</title><source>SIAM Journals Online</source><creator>Van Beeumen, Roel ; Meerbergen, Karl ; Michiels, Wim</creator><creatorcontrib>Van Beeumen, Roel ; Meerbergen, Karl ; Michiels, Wim</creatorcontrib><description>This paper proposes a new rational Krylov method for solving the nonlinear eigenvalue problem: $A(\lambda)x = 0$. The method approximates $A(\lambda)$ by Hermite interpolation where the degree of the interpolating polynomial and the interpolation points are not fixed in advance. It uses a companion-type reformulation to obtain a linear generalized eigenvalue problem (GEP). To this GEP we apply a rational Krylov method that preserves the structure. The companion form grows in each iteration and the interpolation points are dynamically chosen. Each iteration requires a linear system solve with $A(\sigma)$, where $\sigma$ is the last interpolation point. The method is illustrated by small- and large-scale numerical examples. In particular, we illustrate that the method is fully dynamic and can be used as a global search method as well as a local refinement method. In the last case, we compare the method to Newton's method and illustrate that we can achieve an even faster convergence rate. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1064-8275</identifier><identifier>EISSN: 1095-7197</identifier><identifier>DOI: 10.1137/120877556</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Approximation ; Convergence ; Decomposition ; Eigenvalues ; Interpolation ; Iterative methods ; Linear algebra ; Linear systems ; Mathematical models ; Matrix ; Nonlinearity ; Polynomials</subject><ispartof>SIAM journal on scientific computing, 2013-01, Vol.35 (1), p.A327-A350</ispartof><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-ecddbfba8e108d2f41a27ea7b9dc3b4ad61c376fc8212ead00bcbab27f3e1423</citedby><cites>FETCH-LOGICAL-c391t-ecddbfba8e108d2f41a27ea7b9dc3b4ad61c376fc8212ead00bcbab27f3e1423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27903,27904</link.rule.ids></links><search><creatorcontrib>Van Beeumen, Roel</creatorcontrib><creatorcontrib>Meerbergen, Karl</creatorcontrib><creatorcontrib>Michiels, Wim</creatorcontrib><title>A Rational Krylov Method Based on Hermite Interpolation for Nonlinear Eigenvalue Problems</title><title>SIAM journal on scientific computing</title><description>This paper proposes a new rational Krylov method for solving the nonlinear eigenvalue problem: $A(\lambda)x = 0$. The method approximates $A(\lambda)$ by Hermite interpolation where the degree of the interpolating polynomial and the interpolation points are not fixed in advance. It uses a companion-type reformulation to obtain a linear generalized eigenvalue problem (GEP). To this GEP we apply a rational Krylov method that preserves the structure. The companion form grows in each iteration and the interpolation points are dynamically chosen. Each iteration requires a linear system solve with $A(\sigma)$, where $\sigma$ is the last interpolation point. The method is illustrated by small- and large-scale numerical examples. In particular, we illustrate that the method is fully dynamic and can be used as a global search method as well as a local refinement method. In the last case, we compare the method to Newton's method and illustrate that we can achieve an even faster convergence rate. [PUBLICATION ABSTRACT]</description><subject>Approximation</subject><subject>Convergence</subject><subject>Decomposition</subject><subject>Eigenvalues</subject><subject>Interpolation</subject><subject>Iterative methods</subject><subject>Linear algebra</subject><subject>Linear systems</subject><subject>Mathematical models</subject><subject>Matrix</subject><subject>Nonlinearity</subject><subject>Polynomials</subject><issn>1064-8275</issn><issn>1095-7197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0L1OwzAUBeAIgUQpDLyBJRYYAr62YydjQYVWlB-hLkyR49xAKicudlKpb09KEQPTOcOnK90TRedArwG4ugFGU6WSRB5EI6BZEivI1OGuSxGnTCXH0UkIK0pBioyNovcJedNd7VptyaPfWrchT9h9upLc6oAlcS2ZoW_qDsm87dCvnf3hpHKePLvW1i1qT6b1B7YbbXskr94VFptwGh1V2gY8-81xtLyfLu9m8eLlYX43WcSGZ9DFaMqyqAqdItC0ZJUAzRRqVWSl4YXQpQTDlaxMyoChLiktTKELpiqOIBgfR5f7s2vvvnoMXd7UwaC1ukXXhxykAiEk8GygF__oyvV--HxQTGYiA8GTQV3tlfEuBI9VvvZ1o_02B5rvNs7_NubflWhupA</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Van Beeumen, Roel</creator><creator>Meerbergen, Karl</creator><creator>Michiels, Wim</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>A Rational Krylov Method Based on Hermite Interpolation for Nonlinear Eigenvalue Problems</title><author>Van Beeumen, Roel ; Meerbergen, Karl ; Michiels, Wim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-ecddbfba8e108d2f41a27ea7b9dc3b4ad61c376fc8212ead00bcbab27f3e1423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Approximation</topic><topic>Convergence</topic><topic>Decomposition</topic><topic>Eigenvalues</topic><topic>Interpolation</topic><topic>Iterative methods</topic><topic>Linear algebra</topic><topic>Linear systems</topic><topic>Mathematical models</topic><topic>Matrix</topic><topic>Nonlinearity</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Beeumen, Roel</creatorcontrib><creatorcontrib>Meerbergen, Karl</creatorcontrib><creatorcontrib>Michiels, Wim</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Beeumen, Roel</au><au>Meerbergen, Karl</au><au>Michiels, Wim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Rational Krylov Method Based on Hermite Interpolation for Nonlinear Eigenvalue Problems</atitle><jtitle>SIAM journal on scientific computing</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>35</volume><issue>1</issue><spage>A327</spage><epage>A350</epage><pages>A327-A350</pages><issn>1064-8275</issn><eissn>1095-7197</eissn><abstract>This paper proposes a new rational Krylov method for solving the nonlinear eigenvalue problem: $A(\lambda)x = 0$. The method approximates $A(\lambda)$ by Hermite interpolation where the degree of the interpolating polynomial and the interpolation points are not fixed in advance. It uses a companion-type reformulation to obtain a linear generalized eigenvalue problem (GEP). To this GEP we apply a rational Krylov method that preserves the structure. The companion form grows in each iteration and the interpolation points are dynamically chosen. Each iteration requires a linear system solve with $A(\sigma)$, where $\sigma$ is the last interpolation point. The method is illustrated by small- and large-scale numerical examples. In particular, we illustrate that the method is fully dynamic and can be used as a global search method as well as a local refinement method. In the last case, we compare the method to Newton's method and illustrate that we can achieve an even faster convergence rate. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/120877556</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-8275
ispartof SIAM journal on scientific computing, 2013-01, Vol.35 (1), p.A327-A350
issn 1064-8275
1095-7197
language eng
recordid cdi_proquest_miscellaneous_1671446139
source SIAM Journals Online
subjects Approximation
Convergence
Decomposition
Eigenvalues
Interpolation
Iterative methods
Linear algebra
Linear systems
Mathematical models
Matrix
Nonlinearity
Polynomials
title A Rational Krylov Method Based on Hermite Interpolation for Nonlinear Eigenvalue Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Rational%20Krylov%20Method%20Based%20on%20Hermite%20Interpolation%20for%20Nonlinear%20Eigenvalue%20Problems&rft.jtitle=SIAM%20journal%20on%20scientific%20computing&rft.au=Van%20Beeumen,%20Roel&rft.date=2013-01-01&rft.volume=35&rft.issue=1&rft.spage=A327&rft.epage=A350&rft.pages=A327-A350&rft.issn=1064-8275&rft.eissn=1095-7197&rft_id=info:doi/10.1137/120877556&rft_dat=%3Cproquest_cross%3E2865664041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1269491435&rft_id=info:pmid/&rfr_iscdi=true