CuO nanoleaf electrode: facile preparation and nonenzymatic sensor applications

We have prepared a CuO nanoleaf electrode by single-step chemical oxidation of a copper foil immersed in alkaline solution. The CuO nanoleaves obtained in this way are perpendicularly orientated towards the copper substrate and are mechanically stable. This results in a high electron transfer rate b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mikrochimica acta (1966) 2013-04, Vol.180 (5-6), p.371-378
Hauptverfasser: Weng, Shaohuang, Zheng, Yanjie, Zhao, Chengfei, Zhou, Jianzhang, Lin, Liqing, Zheng, Zongfu, Lin, Xinhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 378
container_issue 5-6
container_start_page 371
container_title Mikrochimica acta (1966)
container_volume 180
creator Weng, Shaohuang
Zheng, Yanjie
Zhao, Chengfei
Zhou, Jianzhang
Lin, Liqing
Zheng, Zongfu
Lin, Xinhua
description We have prepared a CuO nanoleaf electrode by single-step chemical oxidation of a copper foil immersed in alkaline solution. The CuO nanoleaves obtained in this way are perpendicularly orientated towards the copper substrate and are mechanically stable. This results in a high electron transfer rate between CuO and the substrate. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and cyclic voltammetry were employed to characterize the morphology, growth, structure, and electrochemical properties of the CuO nanoleaf electrode. It exhibits excellent nonenzymatic response to H 2 O 2 and glucose in 0.1 mol · L −1 NaOH solution, with a wide linear range, good reproducibility, and detection limits of 10 μmol · L −1 for H 2 O 2 , and 1 μmol · L −1 for glucose. The facile preparation, high electrocatalytic activity and response time of
doi_str_mv 10.1007/s00604-012-0920-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671445230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A715065262</galeid><sourcerecordid>A715065262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-4ba3e2a32fe96c1a72f1029f972c7aea0642138874ce1e28fbd7e9580b83d7173</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVoIds0PyA3Qy-9OBl9WLJ7C0uTBhb20p7FrDxaHLySI9mH9NdXG-dSKGUOA8PzDMy8jN1wuOUA5i4DaFA1cFFDJ6BWF2zDldR1A0Z-YBsAoWupjbhkn3J-BuBGC7Vh--2yrwKGOBL6ikZyc4o9fas8umGkako0YcJ5iKHC0FchBgq_X09l4qpMIcdU4TSNg3tj8mf20eOY6fq9X7FfD99_bn_Uu_3j0_Z-VzvZtnOtDihJoBSeOu04GuE5iM53RjiDhKCV4IU0yhEn0fpDb6hrWji0sjfcyCv2dd07pfiyUJ7taciOxhEDxSVbrg1XqhESCvplRY84kh2Cj3NCd8btveEN6EZoUajbf1ClejoNrlztyzv-FvgquBRzTuTtlIYTplfLwZ4zsWsmtmRiz5lYVRyxOrmw4UjJPsclhfKo_0h_AFNCjWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671445230</pqid></control><display><type>article</type><title>CuO nanoleaf electrode: facile preparation and nonenzymatic sensor applications</title><source>Springer Nature - Complete Springer Journals</source><creator>Weng, Shaohuang ; Zheng, Yanjie ; Zhao, Chengfei ; Zhou, Jianzhang ; Lin, Liqing ; Zheng, Zongfu ; Lin, Xinhua</creator><creatorcontrib>Weng, Shaohuang ; Zheng, Yanjie ; Zhao, Chengfei ; Zhou, Jianzhang ; Lin, Liqing ; Zheng, Zongfu ; Lin, Xinhua</creatorcontrib><description>We have prepared a CuO nanoleaf electrode by single-step chemical oxidation of a copper foil immersed in alkaline solution. The CuO nanoleaves obtained in this way are perpendicularly orientated towards the copper substrate and are mechanically stable. This results in a high electron transfer rate between CuO and the substrate. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and cyclic voltammetry were employed to characterize the morphology, growth, structure, and electrochemical properties of the CuO nanoleaf electrode. It exhibits excellent nonenzymatic response to H 2 O 2 and glucose in 0.1 mol · L −1 NaOH solution, with a wide linear range, good reproducibility, and detection limits of 10 μmol · L −1 for H 2 O 2 , and 1 μmol · L −1 for glucose. The facile preparation, high electrocatalytic activity and response time of &lt;5 s demonstrate the potential applications of the new sensor. Figure In this manuscript, a facile preparation method of CuO nanoleaves was developed via one-step chemical oxidation of copper foil immersion into alkaline solution for the first time. The prepared CuO illustrated interesting leaf-like morphology. The CuO nanoleaves electrode was applied to the nonenzymatic determination of H 2 O 2 and glucose in NaOH solution. The sensitivity of CuO nanoleaves electrode towards H 2 O 2 and glucose was high with a wide linear range and low limit of detection. Facile preparation, high electrocatalytic activity, short response time and low limit of detection, demonstrate the further potential applications of CuO nanoleaves electrode.</description><identifier>ISSN: 0026-3672</identifier><identifier>EISSN: 1436-5073</identifier><identifier>DOI: 10.1007/s00604-012-0920-4</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Copper ; Copper oxide ; Copper products ; Cuprite ; Dextrose ; Diffraction ; Electrodes ; Electron transport ; Glucose ; Microengineering ; Nanochemistry ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; Original Paper ; Scanning electron microscopy ; Sensors ; X-rays</subject><ispartof>Mikrochimica acta (1966), 2013-04, Vol.180 (5-6), p.371-378</ispartof><rights>Springer-Verlag Wien 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-4ba3e2a32fe96c1a72f1029f972c7aea0642138874ce1e28fbd7e9580b83d7173</citedby><cites>FETCH-LOGICAL-c388t-4ba3e2a32fe96c1a72f1029f972c7aea0642138874ce1e28fbd7e9580b83d7173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00604-012-0920-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00604-012-0920-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Weng, Shaohuang</creatorcontrib><creatorcontrib>Zheng, Yanjie</creatorcontrib><creatorcontrib>Zhao, Chengfei</creatorcontrib><creatorcontrib>Zhou, Jianzhang</creatorcontrib><creatorcontrib>Lin, Liqing</creatorcontrib><creatorcontrib>Zheng, Zongfu</creatorcontrib><creatorcontrib>Lin, Xinhua</creatorcontrib><title>CuO nanoleaf electrode: facile preparation and nonenzymatic sensor applications</title><title>Mikrochimica acta (1966)</title><addtitle>Microchim Acta</addtitle><description>We have prepared a CuO nanoleaf electrode by single-step chemical oxidation of a copper foil immersed in alkaline solution. The CuO nanoleaves obtained in this way are perpendicularly orientated towards the copper substrate and are mechanically stable. This results in a high electron transfer rate between CuO and the substrate. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and cyclic voltammetry were employed to characterize the morphology, growth, structure, and electrochemical properties of the CuO nanoleaf electrode. It exhibits excellent nonenzymatic response to H 2 O 2 and glucose in 0.1 mol · L −1 NaOH solution, with a wide linear range, good reproducibility, and detection limits of 10 μmol · L −1 for H 2 O 2 , and 1 μmol · L −1 for glucose. The facile preparation, high electrocatalytic activity and response time of &lt;5 s demonstrate the potential applications of the new sensor. Figure In this manuscript, a facile preparation method of CuO nanoleaves was developed via one-step chemical oxidation of copper foil immersion into alkaline solution for the first time. The prepared CuO illustrated interesting leaf-like morphology. The CuO nanoleaves electrode was applied to the nonenzymatic determination of H 2 O 2 and glucose in NaOH solution. The sensitivity of CuO nanoleaves electrode towards H 2 O 2 and glucose was high with a wide linear range and low limit of detection. Facile preparation, high electrocatalytic activity, short response time and low limit of detection, demonstrate the further potential applications of CuO nanoleaves electrode.</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Copper oxide</subject><subject>Copper products</subject><subject>Cuprite</subject><subject>Dextrose</subject><subject>Diffraction</subject><subject>Electrodes</subject><subject>Electron transport</subject><subject>Glucose</subject><subject>Microengineering</subject><subject>Nanochemistry</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Original Paper</subject><subject>Scanning electron microscopy</subject><subject>Sensors</subject><subject>X-rays</subject><issn>0026-3672</issn><issn>1436-5073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU1r3DAQhkVoIds0PyA3Qy-9OBl9WLJ7C0uTBhb20p7FrDxaHLySI9mH9NdXG-dSKGUOA8PzDMy8jN1wuOUA5i4DaFA1cFFDJ6BWF2zDldR1A0Z-YBsAoWupjbhkn3J-BuBGC7Vh--2yrwKGOBL6ikZyc4o9fas8umGkako0YcJ5iKHC0FchBgq_X09l4qpMIcdU4TSNg3tj8mf20eOY6fq9X7FfD99_bn_Uu_3j0_Z-VzvZtnOtDihJoBSeOu04GuE5iM53RjiDhKCV4IU0yhEn0fpDb6hrWji0sjfcyCv2dd07pfiyUJ7taciOxhEDxSVbrg1XqhESCvplRY84kh2Cj3NCd8btveEN6EZoUajbf1ClejoNrlztyzv-FvgquBRzTuTtlIYTplfLwZ4zsWsmtmRiz5lYVRyxOrmw4UjJPsclhfKo_0h_AFNCjWc</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Weng, Shaohuang</creator><creator>Zheng, Yanjie</creator><creator>Zhao, Chengfei</creator><creator>Zhou, Jianzhang</creator><creator>Lin, Liqing</creator><creator>Zheng, Zongfu</creator><creator>Lin, Xinhua</creator><general>Springer Vienna</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130401</creationdate><title>CuO nanoleaf electrode: facile preparation and nonenzymatic sensor applications</title><author>Weng, Shaohuang ; Zheng, Yanjie ; Zhao, Chengfei ; Zhou, Jianzhang ; Lin, Liqing ; Zheng, Zongfu ; Lin, Xinhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-4ba3e2a32fe96c1a72f1029f972c7aea0642138874ce1e28fbd7e9580b83d7173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Copper oxide</topic><topic>Copper products</topic><topic>Cuprite</topic><topic>Dextrose</topic><topic>Diffraction</topic><topic>Electrodes</topic><topic>Electron transport</topic><topic>Glucose</topic><topic>Microengineering</topic><topic>Nanochemistry</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Original Paper</topic><topic>Scanning electron microscopy</topic><topic>Sensors</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Shaohuang</creatorcontrib><creatorcontrib>Zheng, Yanjie</creatorcontrib><creatorcontrib>Zhao, Chengfei</creatorcontrib><creatorcontrib>Zhou, Jianzhang</creatorcontrib><creatorcontrib>Lin, Liqing</creatorcontrib><creatorcontrib>Zheng, Zongfu</creatorcontrib><creatorcontrib>Lin, Xinhua</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Mikrochimica acta (1966)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Shaohuang</au><au>Zheng, Yanjie</au><au>Zhao, Chengfei</au><au>Zhou, Jianzhang</au><au>Lin, Liqing</au><au>Zheng, Zongfu</au><au>Lin, Xinhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CuO nanoleaf electrode: facile preparation and nonenzymatic sensor applications</atitle><jtitle>Mikrochimica acta (1966)</jtitle><stitle>Microchim Acta</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>180</volume><issue>5-6</issue><spage>371</spage><epage>378</epage><pages>371-378</pages><issn>0026-3672</issn><eissn>1436-5073</eissn><abstract>We have prepared a CuO nanoleaf electrode by single-step chemical oxidation of a copper foil immersed in alkaline solution. The CuO nanoleaves obtained in this way are perpendicularly orientated towards the copper substrate and are mechanically stable. This results in a high electron transfer rate between CuO and the substrate. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and cyclic voltammetry were employed to characterize the morphology, growth, structure, and electrochemical properties of the CuO nanoleaf electrode. It exhibits excellent nonenzymatic response to H 2 O 2 and glucose in 0.1 mol · L −1 NaOH solution, with a wide linear range, good reproducibility, and detection limits of 10 μmol · L −1 for H 2 O 2 , and 1 μmol · L −1 for glucose. The facile preparation, high electrocatalytic activity and response time of &lt;5 s demonstrate the potential applications of the new sensor. Figure In this manuscript, a facile preparation method of CuO nanoleaves was developed via one-step chemical oxidation of copper foil immersion into alkaline solution for the first time. The prepared CuO illustrated interesting leaf-like morphology. The CuO nanoleaves electrode was applied to the nonenzymatic determination of H 2 O 2 and glucose in NaOH solution. The sensitivity of CuO nanoleaves electrode towards H 2 O 2 and glucose was high with a wide linear range and low limit of detection. Facile preparation, high electrocatalytic activity, short response time and low limit of detection, demonstrate the further potential applications of CuO nanoleaves electrode.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00604-012-0920-4</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-3672
ispartof Mikrochimica acta (1966), 2013-04, Vol.180 (5-6), p.371-378
issn 0026-3672
1436-5073
language eng
recordid cdi_proquest_miscellaneous_1671445230
source Springer Nature - Complete Springer Journals
subjects Analytical Chemistry
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Copper
Copper oxide
Copper products
Cuprite
Dextrose
Diffraction
Electrodes
Electron transport
Glucose
Microengineering
Nanochemistry
Nanocomposites
Nanomaterials
Nanostructure
Nanotechnology
Original Paper
Scanning electron microscopy
Sensors
X-rays
title CuO nanoleaf electrode: facile preparation and nonenzymatic sensor applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CuO%20nanoleaf%20electrode:%20facile%20preparation%20and%20nonenzymatic%20sensor%20applications&rft.jtitle=Mikrochimica%20acta%20(1966)&rft.au=Weng,%20Shaohuang&rft.date=2013-04-01&rft.volume=180&rft.issue=5-6&rft.spage=371&rft.epage=378&rft.pages=371-378&rft.issn=0026-3672&rft.eissn=1436-5073&rft_id=info:doi/10.1007/s00604-012-0920-4&rft_dat=%3Cgale_proqu%3EA715065262%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671445230&rft_id=info:pmid/&rft_galeid=A715065262&rfr_iscdi=true