Exponentiated modified Weibull extension distribution
A new modified Weibull extension distribution is proposed by Xie et al. [20]. Recently, El-Gohary et al. [9] proposed a new distribution referred to as the generalized Gompertz distribution. In this paper, we propose a new model of a life time distribution that mainly generalizes these two distribut...
Gespeichert in:
Veröffentlicht in: | Reliability engineering & system safety 2013-04, Vol.112, p.137-144 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | |
container_start_page | 137 |
container_title | Reliability engineering & system safety |
container_volume | 112 |
creator | Sarhan, Ammar M. Apaloo, Joseph |
description | A new modified Weibull extension distribution is proposed by Xie et al. [20]. Recently, El-Gohary et al. [9] proposed a new distribution referred to as the generalized Gompertz distribution. In this paper, we propose a new model of a life time distribution that mainly generalizes these two distributions. We refer to this new distribution as the exponentiated modified Weibull extension distribution. This distribution generalizes, in addition to the above two mentioned distributions, the exponentiated Weibull distribution, the generalized exponential and the generalized Rayleigh distributions. Parameter estimation of the four parameters of this distribution is studied. Two real data sets are analyzed using the new distribution, which show that the exponentiated modified Weibull extension distribution can be used quite effectively in fitting and analyzing real lifetime data. |
doi_str_mv | 10.1016/j.ress.2012.10.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671441267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832012002165</els_id><sourcerecordid>1671441267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-39ea1444e0ba87b8504bc31559bce2a773e86e6b673b3afc3094099671a75db3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFMvgpdd87X5AC9S_IKCl4LHkGRnIWW7W5NU6r83S4tHTzPz8r4zzIPQLcE1wUQ8bOoIKdUUE1qEGhN2hmZESV1hxcQ5mmHdkEoxii_RVUobjDHXjZyh5vmwGwcYcrAZ2sV2bEMXSvMJwe37fgGHDEMK47BoQ8qxiLkM1-iis32Cm1Odo_XL83r5Vq0-Xt-XT6vKM8FyxTRYwjkH7KySTjWYO89I02jngVopGSgBwgnJHLOdZ1hzrLWQxMqmdWyO7o9rd3H82kPKZhuSh763A4z7ZEhxck5oyc8RPVp9HFOK0JldDFsbfwzBZkJkNmZCZCZEk1YQldDdab9N3vZdtIMP6S9JhaZcKV58j0cflF-_A0STfIDBQxsi-GzaMfx35hfsbXxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671441267</pqid></control><display><type>article</type><title>Exponentiated modified Weibull extension distribution</title><source>Elsevier ScienceDirect Journals</source><creator>Sarhan, Ammar M. ; Apaloo, Joseph</creator><creatorcontrib>Sarhan, Ammar M. ; Apaloo, Joseph</creatorcontrib><description>A new modified Weibull extension distribution is proposed by Xie et al. [20]. Recently, El-Gohary et al. [9] proposed a new distribution referred to as the generalized Gompertz distribution. In this paper, we propose a new model of a life time distribution that mainly generalizes these two distributions. We refer to this new distribution as the exponentiated modified Weibull extension distribution. This distribution generalizes, in addition to the above two mentioned distributions, the exponentiated Weibull distribution, the generalized exponential and the generalized Rayleigh distributions. Parameter estimation of the four parameters of this distribution is studied. Two real data sets are analyzed using the new distribution, which show that the exponentiated modified Weibull extension distribution can be used quite effectively in fitting and analyzing real lifetime data.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2012.10.013</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Exact sciences and technology ; Exponential ; Fittings ; Generalized Gompertz ; Generalized Rayleigh ; Mathematical models ; Mathematics ; Maximum likelihood method ; Operational research and scientific management ; Operational research. Management science ; Parameter estimation ; Parametric inference ; Probability and statistics ; Rayleigh distribution ; Reliability data analysis ; Reliability engineering ; Reliability theory. Replacement problems ; Safety ; Sciences and techniques of general use ; Statistics ; Weibull distribution</subject><ispartof>Reliability engineering & system safety, 2013-04, Vol.112, p.137-144</ispartof><rights>2012</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-39ea1444e0ba87b8504bc31559bce2a773e86e6b673b3afc3094099671a75db3</citedby><cites>FETCH-LOGICAL-c363t-39ea1444e0ba87b8504bc31559bce2a773e86e6b673b3afc3094099671a75db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0951832012002165$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26924884$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarhan, Ammar M.</creatorcontrib><creatorcontrib>Apaloo, Joseph</creatorcontrib><title>Exponentiated modified Weibull extension distribution</title><title>Reliability engineering & system safety</title><description>A new modified Weibull extension distribution is proposed by Xie et al. [20]. Recently, El-Gohary et al. [9] proposed a new distribution referred to as the generalized Gompertz distribution. In this paper, we propose a new model of a life time distribution that mainly generalizes these two distributions. We refer to this new distribution as the exponentiated modified Weibull extension distribution. This distribution generalizes, in addition to the above two mentioned distributions, the exponentiated Weibull distribution, the generalized exponential and the generalized Rayleigh distributions. Parameter estimation of the four parameters of this distribution is studied. Two real data sets are analyzed using the new distribution, which show that the exponentiated modified Weibull extension distribution can be used quite effectively in fitting and analyzing real lifetime data.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Exponential</subject><subject>Fittings</subject><subject>Generalized Gompertz</subject><subject>Generalized Rayleigh</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Maximum likelihood method</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Parameter estimation</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Rayleigh distribution</subject><subject>Reliability data analysis</subject><subject>Reliability engineering</subject><subject>Reliability theory. Replacement problems</subject><subject>Safety</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Weibull distribution</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFMvgpdd87X5AC9S_IKCl4LHkGRnIWW7W5NU6r83S4tHTzPz8r4zzIPQLcE1wUQ8bOoIKdUUE1qEGhN2hmZESV1hxcQ5mmHdkEoxii_RVUobjDHXjZyh5vmwGwcYcrAZ2sV2bEMXSvMJwe37fgGHDEMK47BoQ8qxiLkM1-iis32Cm1Odo_XL83r5Vq0-Xt-XT6vKM8FyxTRYwjkH7KySTjWYO89I02jngVopGSgBwgnJHLOdZ1hzrLWQxMqmdWyO7o9rd3H82kPKZhuSh763A4z7ZEhxck5oyc8RPVp9HFOK0JldDFsbfwzBZkJkNmZCZCZEk1YQldDdab9N3vZdtIMP6S9JhaZcKV58j0cflF-_A0STfIDBQxsi-GzaMfx35hfsbXxU</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Sarhan, Ammar M.</creator><creator>Apaloo, Joseph</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20130401</creationdate><title>Exponentiated modified Weibull extension distribution</title><author>Sarhan, Ammar M. ; Apaloo, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-39ea1444e0ba87b8504bc31559bce2a773e86e6b673b3afc3094099671a75db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Exponential</topic><topic>Fittings</topic><topic>Generalized Gompertz</topic><topic>Generalized Rayleigh</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Maximum likelihood method</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Parameter estimation</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Rayleigh distribution</topic><topic>Reliability data analysis</topic><topic>Reliability engineering</topic><topic>Reliability theory. Replacement problems</topic><topic>Safety</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarhan, Ammar M.</creatorcontrib><creatorcontrib>Apaloo, Joseph</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Reliability engineering & system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarhan, Ammar M.</au><au>Apaloo, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponentiated modified Weibull extension distribution</atitle><jtitle>Reliability engineering & system safety</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>112</volume><spage>137</spage><epage>144</epage><pages>137-144</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>A new modified Weibull extension distribution is proposed by Xie et al. [20]. Recently, El-Gohary et al. [9] proposed a new distribution referred to as the generalized Gompertz distribution. In this paper, we propose a new model of a life time distribution that mainly generalizes these two distributions. We refer to this new distribution as the exponentiated modified Weibull extension distribution. This distribution generalizes, in addition to the above two mentioned distributions, the exponentiated Weibull distribution, the generalized exponential and the generalized Rayleigh distributions. Parameter estimation of the four parameters of this distribution is studied. Two real data sets are analyzed using the new distribution, which show that the exponentiated modified Weibull extension distribution can be used quite effectively in fitting and analyzing real lifetime data.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2012.10.013</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0951-8320 |
ispartof | Reliability engineering & system safety, 2013-04, Vol.112, p.137-144 |
issn | 0951-8320 1879-0836 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671441267 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Exact sciences and technology Exponential Fittings Generalized Gompertz Generalized Rayleigh Mathematical models Mathematics Maximum likelihood method Operational research and scientific management Operational research. Management science Parameter estimation Parametric inference Probability and statistics Rayleigh distribution Reliability data analysis Reliability engineering Reliability theory. Replacement problems Safety Sciences and techniques of general use Statistics Weibull distribution |
title | Exponentiated modified Weibull extension distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponentiated%20modified%20Weibull%20extension%20distribution&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Sarhan,%20Ammar%20M.&rft.date=2013-04-01&rft.volume=112&rft.spage=137&rft.epage=144&rft.pages=137-144&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2012.10.013&rft_dat=%3Cproquest_cross%3E1671441267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671441267&rft_id=info:pmid/&rft_els_id=S0951832012002165&rfr_iscdi=true |