Exponentiated modified Weibull extension distribution

A new modified Weibull extension distribution is proposed by Xie et al. [20]. Recently, El-Gohary et al. [9] proposed a new distribution referred to as the generalized Gompertz distribution. In this paper, we propose a new model of a life time distribution that mainly generalizes these two distribut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety 2013-04, Vol.112, p.137-144
Hauptverfasser: Sarhan, Ammar M., Apaloo, Joseph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue
container_start_page 137
container_title Reliability engineering & system safety
container_volume 112
creator Sarhan, Ammar M.
Apaloo, Joseph
description A new modified Weibull extension distribution is proposed by Xie et al. [20]. Recently, El-Gohary et al. [9] proposed a new distribution referred to as the generalized Gompertz distribution. In this paper, we propose a new model of a life time distribution that mainly generalizes these two distributions. We refer to this new distribution as the exponentiated modified Weibull extension distribution. This distribution generalizes, in addition to the above two mentioned distributions, the exponentiated Weibull distribution, the generalized exponential and the generalized Rayleigh distributions. Parameter estimation of the four parameters of this distribution is studied. Two real data sets are analyzed using the new distribution, which show that the exponentiated modified Weibull extension distribution can be used quite effectively in fitting and analyzing real lifetime data.
doi_str_mv 10.1016/j.ress.2012.10.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671441267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0951832012002165</els_id><sourcerecordid>1671441267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-39ea1444e0ba87b8504bc31559bce2a773e86e6b673b3afc3094099671a75db3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFMvgpdd87X5AC9S_IKCl4LHkGRnIWW7W5NU6r83S4tHTzPz8r4zzIPQLcE1wUQ8bOoIKdUUE1qEGhN2hmZESV1hxcQ5mmHdkEoxii_RVUobjDHXjZyh5vmwGwcYcrAZ2sV2bEMXSvMJwe37fgGHDEMK47BoQ8qxiLkM1-iis32Cm1Odo_XL83r5Vq0-Xt-XT6vKM8FyxTRYwjkH7KySTjWYO89I02jngVopGSgBwgnJHLOdZ1hzrLWQxMqmdWyO7o9rd3H82kPKZhuSh763A4z7ZEhxck5oyc8RPVp9HFOK0JldDFsbfwzBZkJkNmZCZCZEk1YQldDdab9N3vZdtIMP6S9JhaZcKV58j0cflF-_A0STfIDBQxsi-GzaMfx35hfsbXxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671441267</pqid></control><display><type>article</type><title>Exponentiated modified Weibull extension distribution</title><source>Elsevier ScienceDirect Journals</source><creator>Sarhan, Ammar M. ; Apaloo, Joseph</creator><creatorcontrib>Sarhan, Ammar M. ; Apaloo, Joseph</creatorcontrib><description>A new modified Weibull extension distribution is proposed by Xie et al. [20]. Recently, El-Gohary et al. [9] proposed a new distribution referred to as the generalized Gompertz distribution. In this paper, we propose a new model of a life time distribution that mainly generalizes these two distributions. We refer to this new distribution as the exponentiated modified Weibull extension distribution. This distribution generalizes, in addition to the above two mentioned distributions, the exponentiated Weibull distribution, the generalized exponential and the generalized Rayleigh distributions. Parameter estimation of the four parameters of this distribution is studied. Two real data sets are analyzed using the new distribution, which show that the exponentiated modified Weibull extension distribution can be used quite effectively in fitting and analyzing real lifetime data.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2012.10.013</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Exact sciences and technology ; Exponential ; Fittings ; Generalized Gompertz ; Generalized Rayleigh ; Mathematical models ; Mathematics ; Maximum likelihood method ; Operational research and scientific management ; Operational research. Management science ; Parameter estimation ; Parametric inference ; Probability and statistics ; Rayleigh distribution ; Reliability data analysis ; Reliability engineering ; Reliability theory. Replacement problems ; Safety ; Sciences and techniques of general use ; Statistics ; Weibull distribution</subject><ispartof>Reliability engineering &amp; system safety, 2013-04, Vol.112, p.137-144</ispartof><rights>2012</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-39ea1444e0ba87b8504bc31559bce2a773e86e6b673b3afc3094099671a75db3</citedby><cites>FETCH-LOGICAL-c363t-39ea1444e0ba87b8504bc31559bce2a773e86e6b673b3afc3094099671a75db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0951832012002165$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26924884$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarhan, Ammar M.</creatorcontrib><creatorcontrib>Apaloo, Joseph</creatorcontrib><title>Exponentiated modified Weibull extension distribution</title><title>Reliability engineering &amp; system safety</title><description>A new modified Weibull extension distribution is proposed by Xie et al. [20]. Recently, El-Gohary et al. [9] proposed a new distribution referred to as the generalized Gompertz distribution. In this paper, we propose a new model of a life time distribution that mainly generalizes these two distributions. We refer to this new distribution as the exponentiated modified Weibull extension distribution. This distribution generalizes, in addition to the above two mentioned distributions, the exponentiated Weibull distribution, the generalized exponential and the generalized Rayleigh distributions. Parameter estimation of the four parameters of this distribution is studied. Two real data sets are analyzed using the new distribution, which show that the exponentiated modified Weibull extension distribution can be used quite effectively in fitting and analyzing real lifetime data.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Exponential</subject><subject>Fittings</subject><subject>Generalized Gompertz</subject><subject>Generalized Rayleigh</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Maximum likelihood method</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Parameter estimation</subject><subject>Parametric inference</subject><subject>Probability and statistics</subject><subject>Rayleigh distribution</subject><subject>Reliability data analysis</subject><subject>Reliability engineering</subject><subject>Reliability theory. Replacement problems</subject><subject>Safety</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Weibull distribution</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFMvgpdd87X5AC9S_IKCl4LHkGRnIWW7W5NU6r83S4tHTzPz8r4zzIPQLcE1wUQ8bOoIKdUUE1qEGhN2hmZESV1hxcQ5mmHdkEoxii_RVUobjDHXjZyh5vmwGwcYcrAZ2sV2bEMXSvMJwe37fgGHDEMK47BoQ8qxiLkM1-iis32Cm1Odo_XL83r5Vq0-Xt-XT6vKM8FyxTRYwjkH7KySTjWYO89I02jngVopGSgBwgnJHLOdZ1hzrLWQxMqmdWyO7o9rd3H82kPKZhuSh763A4z7ZEhxck5oyc8RPVp9HFOK0JldDFsbfwzBZkJkNmZCZCZEk1YQldDdab9N3vZdtIMP6S9JhaZcKV58j0cflF-_A0STfIDBQxsi-GzaMfx35hfsbXxU</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Sarhan, Ammar M.</creator><creator>Apaloo, Joseph</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20130401</creationdate><title>Exponentiated modified Weibull extension distribution</title><author>Sarhan, Ammar M. ; Apaloo, Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-39ea1444e0ba87b8504bc31559bce2a773e86e6b673b3afc3094099671a75db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Exponential</topic><topic>Fittings</topic><topic>Generalized Gompertz</topic><topic>Generalized Rayleigh</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Maximum likelihood method</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Parameter estimation</topic><topic>Parametric inference</topic><topic>Probability and statistics</topic><topic>Rayleigh distribution</topic><topic>Reliability data analysis</topic><topic>Reliability engineering</topic><topic>Reliability theory. Replacement problems</topic><topic>Safety</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarhan, Ammar M.</creatorcontrib><creatorcontrib>Apaloo, Joseph</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Reliability engineering &amp; system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarhan, Ammar M.</au><au>Apaloo, Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponentiated modified Weibull extension distribution</atitle><jtitle>Reliability engineering &amp; system safety</jtitle><date>2013-04-01</date><risdate>2013</risdate><volume>112</volume><spage>137</spage><epage>144</epage><pages>137-144</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>A new modified Weibull extension distribution is proposed by Xie et al. [20]. Recently, El-Gohary et al. [9] proposed a new distribution referred to as the generalized Gompertz distribution. In this paper, we propose a new model of a life time distribution that mainly generalizes these two distributions. We refer to this new distribution as the exponentiated modified Weibull extension distribution. This distribution generalizes, in addition to the above two mentioned distributions, the exponentiated Weibull distribution, the generalized exponential and the generalized Rayleigh distributions. Parameter estimation of the four parameters of this distribution is studied. Two real data sets are analyzed using the new distribution, which show that the exponentiated modified Weibull extension distribution can be used quite effectively in fitting and analyzing real lifetime data.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2012.10.013</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0951-8320
ispartof Reliability engineering & system safety, 2013-04, Vol.112, p.137-144
issn 0951-8320
1879-0836
language eng
recordid cdi_proquest_miscellaneous_1671441267
source Elsevier ScienceDirect Journals
subjects Applied sciences
Exact sciences and technology
Exponential
Fittings
Generalized Gompertz
Generalized Rayleigh
Mathematical models
Mathematics
Maximum likelihood method
Operational research and scientific management
Operational research. Management science
Parameter estimation
Parametric inference
Probability and statistics
Rayleigh distribution
Reliability data analysis
Reliability engineering
Reliability theory. Replacement problems
Safety
Sciences and techniques of general use
Statistics
Weibull distribution
title Exponentiated modified Weibull extension distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponentiated%20modified%20Weibull%20extension%20distribution&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Sarhan,%20Ammar%20M.&rft.date=2013-04-01&rft.volume=112&rft.spage=137&rft.epage=144&rft.pages=137-144&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2012.10.013&rft_dat=%3Cproquest_cross%3E1671441267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671441267&rft_id=info:pmid/&rft_els_id=S0951832012002165&rfr_iscdi=true