Neural network-based sliding mode adaptive control for robot manipulators

This paper addresses the robust trajectory tracking problem for a robot manipulator in the presence of uncertainties and disturbances. First, a neural network-based sliding mode adaptive control (NNSMAC), which is a combination of sliding mode technique, neural network (NN) approximation and adaptiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2011-07, Vol.74 (14), p.2377-2384
Hauptverfasser: Sun, Tairen, Pei, Hailong, Pan, Yongping, Zhou, Hongbo, Zhang, Caihong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2384
container_issue 14
container_start_page 2377
container_title Neurocomputing (Amsterdam)
container_volume 74
creator Sun, Tairen
Pei, Hailong
Pan, Yongping
Zhou, Hongbo
Zhang, Caihong
description This paper addresses the robust trajectory tracking problem for a robot manipulator in the presence of uncertainties and disturbances. First, a neural network-based sliding mode adaptive control (NNSMAC), which is a combination of sliding mode technique, neural network (NN) approximation and adaptive technique, is designed to ensure trajectory tracking by the robot manipulator. It is shown using the Lyapunov theory that the tracking error asymptotically converge to zero. However, the assumption on the availability of the robot manipulator dynamics is not always practical. So, an NN-based adaptive observer is designed to estimate the velocities of the links. Next, based on the observer, a neural network-based sliding mode adaptive output feedback control (NNSMAOFC) is designed. Then it is shown by the Lyapunov theory that the trajectory tracking errors, the observer estimation errors asymptotically converge to zero. The effectiveness of the designed NNSMAC, the NN-based adaptive observer and the NNSMAOFC is illustrated by simulations.
doi_str_mv 10.1016/j.neucom.2011.03.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671438742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231211002141</els_id><sourcerecordid>1671438742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-7d6e1360deb6ec955a3c1e56f05835b1cfbb3341c33cc836110bcf81034177f33</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AxddumnNS9q03Qgy-DEw6EbXIU1eJWPb1CQd8d_boa5dPbice-EdQq6BZkBB3O6zASft-oxRgIzyjEJxQlZQlSytWCVOyYrWrEgZB3ZOLkLYUwolsHpFti84edUlA8Zv5z_TRgU0SeisscNH0juDiTJqjPaAiXZD9K5LWucT7xoXk14Ndpw6FZ0Pl-SsVV3Aq7-7Ju-PD2-b53T3-rTd3O9SzXkd09IIBC6owUagrotCcQ1YiJYWFS8a0G3TcJ7DTGtdcQFAG91WQOesLFvO1-Rm2R29-5owRNnboLHr1IBuChJECTmvypzNaL6g2rsQPLZy9LZX_kcClUdzci8Xc_JoTlIuZ3Nz7W6p4fzGwaKXQVscNBrrUUdpnP1_4Bdyd3l6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671438742</pqid></control><display><type>article</type><title>Neural network-based sliding mode adaptive control for robot manipulators</title><source>Elsevier ScienceDirect Journals</source><creator>Sun, Tairen ; Pei, Hailong ; Pan, Yongping ; Zhou, Hongbo ; Zhang, Caihong</creator><creatorcontrib>Sun, Tairen ; Pei, Hailong ; Pan, Yongping ; Zhou, Hongbo ; Zhang, Caihong</creatorcontrib><description>This paper addresses the robust trajectory tracking problem for a robot manipulator in the presence of uncertainties and disturbances. First, a neural network-based sliding mode adaptive control (NNSMAC), which is a combination of sliding mode technique, neural network (NN) approximation and adaptive technique, is designed to ensure trajectory tracking by the robot manipulator. It is shown using the Lyapunov theory that the tracking error asymptotically converge to zero. However, the assumption on the availability of the robot manipulator dynamics is not always practical. So, an NN-based adaptive observer is designed to estimate the velocities of the links. Next, based on the observer, a neural network-based sliding mode adaptive output feedback control (NNSMAOFC) is designed. Then it is shown by the Lyapunov theory that the trajectory tracking errors, the observer estimation errors asymptotically converge to zero. The effectiveness of the designed NNSMAC, the NN-based adaptive observer and the NNSMAOFC is illustrated by simulations.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2011.03.015</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Asymptotic properties ; Manipulators ; Neural network (NN) ; Neural networks ; Observers ; Output feedback control ; Robot arms ; Robot manipulators ; Robots ; Sliding mode ; Sliding mode adaptive control ; Trajectories</subject><ispartof>Neurocomputing (Amsterdam), 2011-07, Vol.74 (14), p.2377-2384</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-7d6e1360deb6ec955a3c1e56f05835b1cfbb3341c33cc836110bcf81034177f33</citedby><cites>FETCH-LOGICAL-c339t-7d6e1360deb6ec955a3c1e56f05835b1cfbb3341c33cc836110bcf81034177f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925231211002141$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Sun, Tairen</creatorcontrib><creatorcontrib>Pei, Hailong</creatorcontrib><creatorcontrib>Pan, Yongping</creatorcontrib><creatorcontrib>Zhou, Hongbo</creatorcontrib><creatorcontrib>Zhang, Caihong</creatorcontrib><title>Neural network-based sliding mode adaptive control for robot manipulators</title><title>Neurocomputing (Amsterdam)</title><description>This paper addresses the robust trajectory tracking problem for a robot manipulator in the presence of uncertainties and disturbances. First, a neural network-based sliding mode adaptive control (NNSMAC), which is a combination of sliding mode technique, neural network (NN) approximation and adaptive technique, is designed to ensure trajectory tracking by the robot manipulator. It is shown using the Lyapunov theory that the tracking error asymptotically converge to zero. However, the assumption on the availability of the robot manipulator dynamics is not always practical. So, an NN-based adaptive observer is designed to estimate the velocities of the links. Next, based on the observer, a neural network-based sliding mode adaptive output feedback control (NNSMAOFC) is designed. Then it is shown by the Lyapunov theory that the trajectory tracking errors, the observer estimation errors asymptotically converge to zero. The effectiveness of the designed NNSMAC, the NN-based adaptive observer and the NNSMAOFC is illustrated by simulations.</description><subject>Asymptotic properties</subject><subject>Manipulators</subject><subject>Neural network (NN)</subject><subject>Neural networks</subject><subject>Observers</subject><subject>Output feedback control</subject><subject>Robot arms</subject><subject>Robot manipulators</subject><subject>Robots</subject><subject>Sliding mode</subject><subject>Sliding mode adaptive control</subject><subject>Trajectories</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AxddumnNS9q03Qgy-DEw6EbXIU1eJWPb1CQd8d_boa5dPbice-EdQq6BZkBB3O6zASft-oxRgIzyjEJxQlZQlSytWCVOyYrWrEgZB3ZOLkLYUwolsHpFti84edUlA8Zv5z_TRgU0SeisscNH0juDiTJqjPaAiXZD9K5LWucT7xoXk14Ndpw6FZ0Pl-SsVV3Aq7-7Ju-PD2-b53T3-rTd3O9SzXkd09IIBC6owUagrotCcQ1YiJYWFS8a0G3TcJ7DTGtdcQFAG91WQOesLFvO1-Rm2R29-5owRNnboLHr1IBuChJECTmvypzNaL6g2rsQPLZy9LZX_kcClUdzci8Xc_JoTlIuZ3Nz7W6p4fzGwaKXQVscNBrrUUdpnP1_4Bdyd3l6</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Sun, Tairen</creator><creator>Pei, Hailong</creator><creator>Pan, Yongping</creator><creator>Zhou, Hongbo</creator><creator>Zhang, Caihong</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>Neural network-based sliding mode adaptive control for robot manipulators</title><author>Sun, Tairen ; Pei, Hailong ; Pan, Yongping ; Zhou, Hongbo ; Zhang, Caihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-7d6e1360deb6ec955a3c1e56f05835b1cfbb3341c33cc836110bcf81034177f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Asymptotic properties</topic><topic>Manipulators</topic><topic>Neural network (NN)</topic><topic>Neural networks</topic><topic>Observers</topic><topic>Output feedback control</topic><topic>Robot arms</topic><topic>Robot manipulators</topic><topic>Robots</topic><topic>Sliding mode</topic><topic>Sliding mode adaptive control</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Tairen</creatorcontrib><creatorcontrib>Pei, Hailong</creatorcontrib><creatorcontrib>Pan, Yongping</creatorcontrib><creatorcontrib>Zhou, Hongbo</creatorcontrib><creatorcontrib>Zhang, Caihong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Tairen</au><au>Pei, Hailong</au><au>Pan, Yongping</au><au>Zhou, Hongbo</au><au>Zhang, Caihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network-based sliding mode adaptive control for robot manipulators</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>74</volume><issue>14</issue><spage>2377</spage><epage>2384</epage><pages>2377-2384</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>This paper addresses the robust trajectory tracking problem for a robot manipulator in the presence of uncertainties and disturbances. First, a neural network-based sliding mode adaptive control (NNSMAC), which is a combination of sliding mode technique, neural network (NN) approximation and adaptive technique, is designed to ensure trajectory tracking by the robot manipulator. It is shown using the Lyapunov theory that the tracking error asymptotically converge to zero. However, the assumption on the availability of the robot manipulator dynamics is not always practical. So, an NN-based adaptive observer is designed to estimate the velocities of the links. Next, based on the observer, a neural network-based sliding mode adaptive output feedback control (NNSMAOFC) is designed. Then it is shown by the Lyapunov theory that the trajectory tracking errors, the observer estimation errors asymptotically converge to zero. The effectiveness of the designed NNSMAC, the NN-based adaptive observer and the NNSMAOFC is illustrated by simulations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2011.03.015</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2011-07, Vol.74 (14), p.2377-2384
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1671438742
source Elsevier ScienceDirect Journals
subjects Asymptotic properties
Manipulators
Neural network (NN)
Neural networks
Observers
Output feedback control
Robot arms
Robot manipulators
Robots
Sliding mode
Sliding mode adaptive control
Trajectories
title Neural network-based sliding mode adaptive control for robot manipulators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network-based%20sliding%20mode%20adaptive%20control%20for%20robot%20manipulators&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Sun,%20Tairen&rft.date=2011-07-01&rft.volume=74&rft.issue=14&rft.spage=2377&rft.epage=2384&rft.pages=2377-2384&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2011.03.015&rft_dat=%3Cproquest_cross%3E1671438742%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671438742&rft_id=info:pmid/&rft_els_id=S0925231211002141&rfr_iscdi=true