Application of arachnid prey localisation theory for a robot sensorimotor controller
We extend an existing spiking neural model of arachnid prey orientation sensing with a view to potentially using it in robotics applications. Firstly, we have added ‘motor’ behaviour by implementing a simulated arachnid in a physics simulation so that sensory signals from the neural model can be tra...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2011-10, Vol.74 (17), p.3335-3342 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3342 |
---|---|
container_issue | 17 |
container_start_page | 3335 |
container_title | Neurocomputing (Amsterdam) |
container_volume | 74 |
creator | Adams, S.V. Wennekers, T. Bugmann, G. Denham, S. Culverhouse, P.F. |
description | We extend an existing spiking neural model of arachnid prey orientation sensing with a view to potentially using it in robotics applications. Firstly, we have added ‘motor’ behaviour by implementing a simulated arachnid in a physics simulation so that sensory signals from the neural model can be translated into movement to orient towards the prey. We have also created a spiking neural distance estimation model with a complementary motor model that enables walking towards the prey. Results from testing of the neural and motor aspects show that the neural models can represent actual prey angle and distance to a high degree of accuracy: an average error of approximately 7° in estimating prey angle and 1
cm in the estimation of distance to prey. The motor models consistently show the correct turning and walking responses but the overall accuracy is reduced with an average error of around 15° for angle and 1.25
cm for distance. In the case of orientation this is still in line with the error rate of between 12° and 15°, which has been observed in real arachnids. |
doi_str_mv | 10.1016/j.neucom.2011.05.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671438532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231211003560</els_id><sourcerecordid>1671438532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-d482ed84856b612dc510c3d5001d7bf5e1e9882c1370cd2dd8415d235063303</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKv_wEWWbmbMYzKTboRSfEHBhd2HNLlDU9LJmKRC_73Rca2rC_d-53DPQeiWkpoS2t7v6wGOJhxqRiitiagJI2doRmXHKslke45mZMFExThll-gqpT0htKNsMUOb5Th6Z3R2YcChxzpqsxucxWOEE_bBaO_SdM07CPGE-xCxxjFsQ8YJhhSiO4RcliYMOQbvIV6ji177BDe_c47enx43q5dq_fb8ulquK8M7livbSAZWNlK025YyawQlhltRnrPdthdAYSElM5R3xFhmC0qFZVyQlnPC5-huch1j-DhCyurgkgHv9QDhmBRtO9pwKTj7HyUL3rBG_qDNhJoYUorQq7EE1PFUIPXdttqrqW313bYiQpW2i-xhkkHJ--kgqmQcDAasi2CyssH9bfAFpYaKaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1093424832</pqid></control><display><type>article</type><title>Application of arachnid prey localisation theory for a robot sensorimotor controller</title><source>Elsevier ScienceDirect Journals</source><creator>Adams, S.V. ; Wennekers, T. ; Bugmann, G. ; Denham, S. ; Culverhouse, P.F.</creator><creatorcontrib>Adams, S.V. ; Wennekers, T. ; Bugmann, G. ; Denham, S. ; Culverhouse, P.F.</creatorcontrib><description>We extend an existing spiking neural model of arachnid prey orientation sensing with a view to potentially using it in robotics applications. Firstly, we have added ‘motor’ behaviour by implementing a simulated arachnid in a physics simulation so that sensory signals from the neural model can be translated into movement to orient towards the prey. We have also created a spiking neural distance estimation model with a complementary motor model that enables walking towards the prey. Results from testing of the neural and motor aspects show that the neural models can represent actual prey angle and distance to a high degree of accuracy: an average error of approximately 7° in estimating prey angle and 1
cm in the estimation of distance to prey. The motor models consistently show the correct turning and walking responses but the overall accuracy is reduced with an average error of around 15° for angle and 1.25
cm for distance. In the case of orientation this is still in line with the error rate of between 12° and 15°, which has been observed in real arachnids.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2011.05.020</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Arachnid prey localisation ; Arachnids ; Computer simulation ; Errors ; Motors ; Orientation ; Robot controller ; Robots ; Sensorimotor coordination ; Spiking ; Spiking neural network ; Walking</subject><ispartof>Neurocomputing (Amsterdam), 2011-10, Vol.74 (17), p.3335-3342</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-d482ed84856b612dc510c3d5001d7bf5e1e9882c1370cd2dd8415d235063303</citedby><cites>FETCH-LOGICAL-c372t-d482ed84856b612dc510c3d5001d7bf5e1e9882c1370cd2dd8415d235063303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neucom.2011.05.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Adams, S.V.</creatorcontrib><creatorcontrib>Wennekers, T.</creatorcontrib><creatorcontrib>Bugmann, G.</creatorcontrib><creatorcontrib>Denham, S.</creatorcontrib><creatorcontrib>Culverhouse, P.F.</creatorcontrib><title>Application of arachnid prey localisation theory for a robot sensorimotor controller</title><title>Neurocomputing (Amsterdam)</title><description>We extend an existing spiking neural model of arachnid prey orientation sensing with a view to potentially using it in robotics applications. Firstly, we have added ‘motor’ behaviour by implementing a simulated arachnid in a physics simulation so that sensory signals from the neural model can be translated into movement to orient towards the prey. We have also created a spiking neural distance estimation model with a complementary motor model that enables walking towards the prey. Results from testing of the neural and motor aspects show that the neural models can represent actual prey angle and distance to a high degree of accuracy: an average error of approximately 7° in estimating prey angle and 1
cm in the estimation of distance to prey. The motor models consistently show the correct turning and walking responses but the overall accuracy is reduced with an average error of around 15° for angle and 1.25
cm for distance. In the case of orientation this is still in line with the error rate of between 12° and 15°, which has been observed in real arachnids.</description><subject>Arachnid prey localisation</subject><subject>Arachnids</subject><subject>Computer simulation</subject><subject>Errors</subject><subject>Motors</subject><subject>Orientation</subject><subject>Robot controller</subject><subject>Robots</subject><subject>Sensorimotor coordination</subject><subject>Spiking</subject><subject>Spiking neural network</subject><subject>Walking</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKv_wEWWbmbMYzKTboRSfEHBhd2HNLlDU9LJmKRC_73Rca2rC_d-53DPQeiWkpoS2t7v6wGOJhxqRiitiagJI2doRmXHKslke45mZMFExThll-gqpT0htKNsMUOb5Th6Z3R2YcChxzpqsxucxWOEE_bBaO_SdM07CPGE-xCxxjFsQ8YJhhSiO4RcliYMOQbvIV6ji177BDe_c47enx43q5dq_fb8ulquK8M7livbSAZWNlK025YyawQlhltRnrPdthdAYSElM5R3xFhmC0qFZVyQlnPC5-huch1j-DhCyurgkgHv9QDhmBRtO9pwKTj7HyUL3rBG_qDNhJoYUorQq7EE1PFUIPXdttqrqW313bYiQpW2i-xhkkHJ--kgqmQcDAasi2CyssH9bfAFpYaKaA</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Adams, S.V.</creator><creator>Wennekers, T.</creator><creator>Bugmann, G.</creator><creator>Denham, S.</creator><creator>Culverhouse, P.F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111001</creationdate><title>Application of arachnid prey localisation theory for a robot sensorimotor controller</title><author>Adams, S.V. ; Wennekers, T. ; Bugmann, G. ; Denham, S. ; Culverhouse, P.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-d482ed84856b612dc510c3d5001d7bf5e1e9882c1370cd2dd8415d235063303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Arachnid prey localisation</topic><topic>Arachnids</topic><topic>Computer simulation</topic><topic>Errors</topic><topic>Motors</topic><topic>Orientation</topic><topic>Robot controller</topic><topic>Robots</topic><topic>Sensorimotor coordination</topic><topic>Spiking</topic><topic>Spiking neural network</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adams, S.V.</creatorcontrib><creatorcontrib>Wennekers, T.</creatorcontrib><creatorcontrib>Bugmann, G.</creatorcontrib><creatorcontrib>Denham, S.</creatorcontrib><creatorcontrib>Culverhouse, P.F.</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adams, S.V.</au><au>Wennekers, T.</au><au>Bugmann, G.</au><au>Denham, S.</au><au>Culverhouse, P.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of arachnid prey localisation theory for a robot sensorimotor controller</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>74</volume><issue>17</issue><spage>3335</spage><epage>3342</epage><pages>3335-3342</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>We extend an existing spiking neural model of arachnid prey orientation sensing with a view to potentially using it in robotics applications. Firstly, we have added ‘motor’ behaviour by implementing a simulated arachnid in a physics simulation so that sensory signals from the neural model can be translated into movement to orient towards the prey. We have also created a spiking neural distance estimation model with a complementary motor model that enables walking towards the prey. Results from testing of the neural and motor aspects show that the neural models can represent actual prey angle and distance to a high degree of accuracy: an average error of approximately 7° in estimating prey angle and 1
cm in the estimation of distance to prey. The motor models consistently show the correct turning and walking responses but the overall accuracy is reduced with an average error of around 15° for angle and 1.25
cm for distance. In the case of orientation this is still in line with the error rate of between 12° and 15°, which has been observed in real arachnids.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2011.05.020</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2312 |
ispartof | Neurocomputing (Amsterdam), 2011-10, Vol.74 (17), p.3335-3342 |
issn | 0925-2312 1872-8286 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671438532 |
source | Elsevier ScienceDirect Journals |
subjects | Arachnid prey localisation Arachnids Computer simulation Errors Motors Orientation Robot controller Robots Sensorimotor coordination Spiking Spiking neural network Walking |
title | Application of arachnid prey localisation theory for a robot sensorimotor controller |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20arachnid%20prey%20localisation%20theory%20for%20a%20robot%20sensorimotor%20controller&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Adams,%20S.V.&rft.date=2011-10-01&rft.volume=74&rft.issue=17&rft.spage=3335&rft.epage=3342&rft.pages=3335-3342&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2011.05.020&rft_dat=%3Cproquest_cross%3E1671438532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1093424832&rft_id=info:pmid/&rft_els_id=S0925231211003560&rfr_iscdi=true |