Application of arachnid prey localisation theory for a robot sensorimotor controller

We extend an existing spiking neural model of arachnid prey orientation sensing with a view to potentially using it in robotics applications. Firstly, we have added ‘motor’ behaviour by implementing a simulated arachnid in a physics simulation so that sensory signals from the neural model can be tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2011-10, Vol.74 (17), p.3335-3342
Hauptverfasser: Adams, S.V., Wennekers, T., Bugmann, G., Denham, S., Culverhouse, P.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3342
container_issue 17
container_start_page 3335
container_title Neurocomputing (Amsterdam)
container_volume 74
creator Adams, S.V.
Wennekers, T.
Bugmann, G.
Denham, S.
Culverhouse, P.F.
description We extend an existing spiking neural model of arachnid prey orientation sensing with a view to potentially using it in robotics applications. Firstly, we have added ‘motor’ behaviour by implementing a simulated arachnid in a physics simulation so that sensory signals from the neural model can be translated into movement to orient towards the prey. We have also created a spiking neural distance estimation model with a complementary motor model that enables walking towards the prey. Results from testing of the neural and motor aspects show that the neural models can represent actual prey angle and distance to a high degree of accuracy: an average error of approximately 7° in estimating prey angle and 1 cm in the estimation of distance to prey. The motor models consistently show the correct turning and walking responses but the overall accuracy is reduced with an average error of around 15° for angle and 1.25 cm for distance. In the case of orientation this is still in line with the error rate of between 12° and 15°, which has been observed in real arachnids.
doi_str_mv 10.1016/j.neucom.2011.05.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671438532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231211003560</els_id><sourcerecordid>1671438532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-d482ed84856b612dc510c3d5001d7bf5e1e9882c1370cd2dd8415d235063303</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKv_wEWWbmbMYzKTboRSfEHBhd2HNLlDU9LJmKRC_73Rca2rC_d-53DPQeiWkpoS2t7v6wGOJhxqRiitiagJI2doRmXHKslke45mZMFExThll-gqpT0htKNsMUOb5Th6Z3R2YcChxzpqsxucxWOEE_bBaO_SdM07CPGE-xCxxjFsQ8YJhhSiO4RcliYMOQbvIV6ji177BDe_c47enx43q5dq_fb8ulquK8M7livbSAZWNlK025YyawQlhltRnrPdthdAYSElM5R3xFhmC0qFZVyQlnPC5-huch1j-DhCyurgkgHv9QDhmBRtO9pwKTj7HyUL3rBG_qDNhJoYUorQq7EE1PFUIPXdttqrqW313bYiQpW2i-xhkkHJ--kgqmQcDAasi2CyssH9bfAFpYaKaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1093424832</pqid></control><display><type>article</type><title>Application of arachnid prey localisation theory for a robot sensorimotor controller</title><source>Elsevier ScienceDirect Journals</source><creator>Adams, S.V. ; Wennekers, T. ; Bugmann, G. ; Denham, S. ; Culverhouse, P.F.</creator><creatorcontrib>Adams, S.V. ; Wennekers, T. ; Bugmann, G. ; Denham, S. ; Culverhouse, P.F.</creatorcontrib><description>We extend an existing spiking neural model of arachnid prey orientation sensing with a view to potentially using it in robotics applications. Firstly, we have added ‘motor’ behaviour by implementing a simulated arachnid in a physics simulation so that sensory signals from the neural model can be translated into movement to orient towards the prey. We have also created a spiking neural distance estimation model with a complementary motor model that enables walking towards the prey. Results from testing of the neural and motor aspects show that the neural models can represent actual prey angle and distance to a high degree of accuracy: an average error of approximately 7° in estimating prey angle and 1 cm in the estimation of distance to prey. The motor models consistently show the correct turning and walking responses but the overall accuracy is reduced with an average error of around 15° for angle and 1.25 cm for distance. In the case of orientation this is still in line with the error rate of between 12° and 15°, which has been observed in real arachnids.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2011.05.020</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Arachnid prey localisation ; Arachnids ; Computer simulation ; Errors ; Motors ; Orientation ; Robot controller ; Robots ; Sensorimotor coordination ; Spiking ; Spiking neural network ; Walking</subject><ispartof>Neurocomputing (Amsterdam), 2011-10, Vol.74 (17), p.3335-3342</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-d482ed84856b612dc510c3d5001d7bf5e1e9882c1370cd2dd8415d235063303</citedby><cites>FETCH-LOGICAL-c372t-d482ed84856b612dc510c3d5001d7bf5e1e9882c1370cd2dd8415d235063303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neucom.2011.05.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Adams, S.V.</creatorcontrib><creatorcontrib>Wennekers, T.</creatorcontrib><creatorcontrib>Bugmann, G.</creatorcontrib><creatorcontrib>Denham, S.</creatorcontrib><creatorcontrib>Culverhouse, P.F.</creatorcontrib><title>Application of arachnid prey localisation theory for a robot sensorimotor controller</title><title>Neurocomputing (Amsterdam)</title><description>We extend an existing spiking neural model of arachnid prey orientation sensing with a view to potentially using it in robotics applications. Firstly, we have added ‘motor’ behaviour by implementing a simulated arachnid in a physics simulation so that sensory signals from the neural model can be translated into movement to orient towards the prey. We have also created a spiking neural distance estimation model with a complementary motor model that enables walking towards the prey. Results from testing of the neural and motor aspects show that the neural models can represent actual prey angle and distance to a high degree of accuracy: an average error of approximately 7° in estimating prey angle and 1 cm in the estimation of distance to prey. The motor models consistently show the correct turning and walking responses but the overall accuracy is reduced with an average error of around 15° for angle and 1.25 cm for distance. In the case of orientation this is still in line with the error rate of between 12° and 15°, which has been observed in real arachnids.</description><subject>Arachnid prey localisation</subject><subject>Arachnids</subject><subject>Computer simulation</subject><subject>Errors</subject><subject>Motors</subject><subject>Orientation</subject><subject>Robot controller</subject><subject>Robots</subject><subject>Sensorimotor coordination</subject><subject>Spiking</subject><subject>Spiking neural network</subject><subject>Walking</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKv_wEWWbmbMYzKTboRSfEHBhd2HNLlDU9LJmKRC_73Rca2rC_d-53DPQeiWkpoS2t7v6wGOJhxqRiitiagJI2doRmXHKslke45mZMFExThll-gqpT0htKNsMUOb5Th6Z3R2YcChxzpqsxucxWOEE_bBaO_SdM07CPGE-xCxxjFsQ8YJhhSiO4RcliYMOQbvIV6ji177BDe_c47enx43q5dq_fb8ulquK8M7livbSAZWNlK025YyawQlhltRnrPdthdAYSElM5R3xFhmC0qFZVyQlnPC5-huch1j-DhCyurgkgHv9QDhmBRtO9pwKTj7HyUL3rBG_qDNhJoYUorQq7EE1PFUIPXdttqrqW313bYiQpW2i-xhkkHJ--kgqmQcDAasi2CyssH9bfAFpYaKaA</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Adams, S.V.</creator><creator>Wennekers, T.</creator><creator>Bugmann, G.</creator><creator>Denham, S.</creator><creator>Culverhouse, P.F.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111001</creationdate><title>Application of arachnid prey localisation theory for a robot sensorimotor controller</title><author>Adams, S.V. ; Wennekers, T. ; Bugmann, G. ; Denham, S. ; Culverhouse, P.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-d482ed84856b612dc510c3d5001d7bf5e1e9882c1370cd2dd8415d235063303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Arachnid prey localisation</topic><topic>Arachnids</topic><topic>Computer simulation</topic><topic>Errors</topic><topic>Motors</topic><topic>Orientation</topic><topic>Robot controller</topic><topic>Robots</topic><topic>Sensorimotor coordination</topic><topic>Spiking</topic><topic>Spiking neural network</topic><topic>Walking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adams, S.V.</creatorcontrib><creatorcontrib>Wennekers, T.</creatorcontrib><creatorcontrib>Bugmann, G.</creatorcontrib><creatorcontrib>Denham, S.</creatorcontrib><creatorcontrib>Culverhouse, P.F.</creatorcontrib><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adams, S.V.</au><au>Wennekers, T.</au><au>Bugmann, G.</au><au>Denham, S.</au><au>Culverhouse, P.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of arachnid prey localisation theory for a robot sensorimotor controller</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>74</volume><issue>17</issue><spage>3335</spage><epage>3342</epage><pages>3335-3342</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>We extend an existing spiking neural model of arachnid prey orientation sensing with a view to potentially using it in robotics applications. Firstly, we have added ‘motor’ behaviour by implementing a simulated arachnid in a physics simulation so that sensory signals from the neural model can be translated into movement to orient towards the prey. We have also created a spiking neural distance estimation model with a complementary motor model that enables walking towards the prey. Results from testing of the neural and motor aspects show that the neural models can represent actual prey angle and distance to a high degree of accuracy: an average error of approximately 7° in estimating prey angle and 1 cm in the estimation of distance to prey. The motor models consistently show the correct turning and walking responses but the overall accuracy is reduced with an average error of around 15° for angle and 1.25 cm for distance. In the case of orientation this is still in line with the error rate of between 12° and 15°, which has been observed in real arachnids.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2011.05.020</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2011-10, Vol.74 (17), p.3335-3342
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1671438532
source Elsevier ScienceDirect Journals
subjects Arachnid prey localisation
Arachnids
Computer simulation
Errors
Motors
Orientation
Robot controller
Robots
Sensorimotor coordination
Spiking
Spiking neural network
Walking
title Application of arachnid prey localisation theory for a robot sensorimotor controller
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20arachnid%20prey%20localisation%20theory%20for%20a%20robot%20sensorimotor%20controller&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Adams,%20S.V.&rft.date=2011-10-01&rft.volume=74&rft.issue=17&rft.spage=3335&rft.epage=3342&rft.pages=3335-3342&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2011.05.020&rft_dat=%3Cproquest_cross%3E1671438532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1093424832&rft_id=info:pmid/&rft_els_id=S0925231211003560&rfr_iscdi=true