Sub-unit cell layer-by-layer growth of Fe3O4, MgO, and Sr2RuO4 thin films

The use of oxide materials in oxide electronics requires their controlled epitaxial growth. Recently, it was shown that Reflection High Energy Electron Diffraction (RHEED) allows the growth of oxide thin films to be monitored, even at high oxygen pressures. Here, we report the sub-unit cell molecula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2003-10, Vol.77 (5), p.619-621
Hauptverfasser: Reisinger, D., Blass, B., Klein, J., Philipp, J.B., Schonecke, M., Erb, A., Alff, L., Gross, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 621
container_issue 5
container_start_page 619
container_title Applied physics. A, Materials science & processing
container_volume 77
creator Reisinger, D.
Blass, B.
Klein, J.
Philipp, J.B.
Schonecke, M.
Erb, A.
Alff, L.
Gross, R.
description The use of oxide materials in oxide electronics requires their controlled epitaxial growth. Recently, it was shown that Reflection High Energy Electron Diffraction (RHEED) allows the growth of oxide thin films to be monitored, even at high oxygen pressures. Here, we report the sub-unit cell molecular or block layer growth of the oxide materials Sr2RuO4, MgO, and magnetite using Pulsed Laser Deposition (PLD) from stoichiometric targets. Whereas a single RHEED intensity oscillation is found to correspond to the growth of a single unit cell for perovskites such as SrTiO3 or doped LaMnO3, in materials where the unit cell is composed of several molecular layers or blocks with identical stoichiometry, sub-unit cell molecular or block layer growth is established, resulting in several RHEED intensity oscillations during the growth of a single unit cell.
doi_str_mv 10.1007/s00339-003-2105-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671436644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671436644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-d410e44761eacede82c63e12136d054d89088959efd209c5eb325af5f783f4c33</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqXwANx85FDD-idOfEQVhUqgSBTOluus26A0KXYi1Lcnpexhdg-j0exHyC2Hew6QPyQAKQ0blQkOGTNnZMKVFAy0hHMyAaNyVkijL8lVSl8wjhJiQparYc2Gtu6px6ahjTtgZOsD-zvoJnY__ZZ2gS5QlmpG3zbljLq2oqso3odS0X5btzTUzS5dk4vgmoQ3_3tKPhdPH_MX9lo-L-ePr8yLXPesUhxQqVxzdB4rLITXErngUleQqaowUBQmMxgqAcZnuJYicyELeSGD8lJOyd0pdx-77wFTb3d1OpZ3LXZDslzn4-NaKzVa-cnqY5dSxGD3sd65eLAc7BGbPWGzo9ojNmvkL6N2XUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671436644</pqid></control><display><type>article</type><title>Sub-unit cell layer-by-layer growth of Fe3O4, MgO, and Sr2RuO4 thin films</title><source>Springer Nature - Complete Springer Journals</source><creator>Reisinger, D. ; Blass, B. ; Klein, J. ; Philipp, J.B. ; Schonecke, M. ; Erb, A. ; Alff, L. ; Gross, R.</creator><creatorcontrib>Reisinger, D. ; Blass, B. ; Klein, J. ; Philipp, J.B. ; Schonecke, M. ; Erb, A. ; Alff, L. ; Gross, R.</creatorcontrib><description>The use of oxide materials in oxide electronics requires their controlled epitaxial growth. Recently, it was shown that Reflection High Energy Electron Diffraction (RHEED) allows the growth of oxide thin films to be monitored, even at high oxygen pressures. Here, we report the sub-unit cell molecular or block layer growth of the oxide materials Sr2RuO4, MgO, and magnetite using Pulsed Laser Deposition (PLD) from stoichiometric targets. Whereas a single RHEED intensity oscillation is found to correspond to the growth of a single unit cell for perovskites such as SrTiO3 or doped LaMnO3, in materials where the unit cell is composed of several molecular layers or blocks with identical stoichiometry, sub-unit cell molecular or block layer growth is established, resulting in several RHEED intensity oscillations during the growth of a single unit cell.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-003-2105-9</identifier><language>eng</language><subject>Blocking ; Epitaxial growth ; Magnesium oxide ; Oscillations ; Oxides ; Stoichiometry ; Thin films ; Unit cell</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2003-10, Vol.77 (5), p.619-621</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-d410e44761eacede82c63e12136d054d89088959efd209c5eb325af5f783f4c33</citedby><cites>FETCH-LOGICAL-c276t-d410e44761eacede82c63e12136d054d89088959efd209c5eb325af5f783f4c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Reisinger, D.</creatorcontrib><creatorcontrib>Blass, B.</creatorcontrib><creatorcontrib>Klein, J.</creatorcontrib><creatorcontrib>Philipp, J.B.</creatorcontrib><creatorcontrib>Schonecke, M.</creatorcontrib><creatorcontrib>Erb, A.</creatorcontrib><creatorcontrib>Alff, L.</creatorcontrib><creatorcontrib>Gross, R.</creatorcontrib><title>Sub-unit cell layer-by-layer growth of Fe3O4, MgO, and Sr2RuO4 thin films</title><title>Applied physics. A, Materials science &amp; processing</title><description>The use of oxide materials in oxide electronics requires their controlled epitaxial growth. Recently, it was shown that Reflection High Energy Electron Diffraction (RHEED) allows the growth of oxide thin films to be monitored, even at high oxygen pressures. Here, we report the sub-unit cell molecular or block layer growth of the oxide materials Sr2RuO4, MgO, and magnetite using Pulsed Laser Deposition (PLD) from stoichiometric targets. Whereas a single RHEED intensity oscillation is found to correspond to the growth of a single unit cell for perovskites such as SrTiO3 or doped LaMnO3, in materials where the unit cell is composed of several molecular layers or blocks with identical stoichiometry, sub-unit cell molecular or block layer growth is established, resulting in several RHEED intensity oscillations during the growth of a single unit cell.</description><subject>Blocking</subject><subject>Epitaxial growth</subject><subject>Magnesium oxide</subject><subject>Oscillations</subject><subject>Oxides</subject><subject>Stoichiometry</subject><subject>Thin films</subject><subject>Unit cell</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotkM1OwzAQhC0EEqXwANx85FDD-idOfEQVhUqgSBTOluus26A0KXYi1Lcnpexhdg-j0exHyC2Hew6QPyQAKQ0blQkOGTNnZMKVFAy0hHMyAaNyVkijL8lVSl8wjhJiQparYc2Gtu6px6ahjTtgZOsD-zvoJnY__ZZ2gS5QlmpG3zbljLq2oqso3odS0X5btzTUzS5dk4vgmoQ3_3tKPhdPH_MX9lo-L-ePr8yLXPesUhxQqVxzdB4rLITXErngUleQqaowUBQmMxgqAcZnuJYicyELeSGD8lJOyd0pdx-77wFTb3d1OpZ3LXZDslzn4-NaKzVa-cnqY5dSxGD3sd65eLAc7BGbPWGzo9ojNmvkL6N2XUY</recordid><startdate>200310</startdate><enddate>200310</enddate><creator>Reisinger, D.</creator><creator>Blass, B.</creator><creator>Klein, J.</creator><creator>Philipp, J.B.</creator><creator>Schonecke, M.</creator><creator>Erb, A.</creator><creator>Alff, L.</creator><creator>Gross, R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200310</creationdate><title>Sub-unit cell layer-by-layer growth of Fe3O4, MgO, and Sr2RuO4 thin films</title><author>Reisinger, D. ; Blass, B. ; Klein, J. ; Philipp, J.B. ; Schonecke, M. ; Erb, A. ; Alff, L. ; Gross, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-d410e44761eacede82c63e12136d054d89088959efd209c5eb325af5f783f4c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Blocking</topic><topic>Epitaxial growth</topic><topic>Magnesium oxide</topic><topic>Oscillations</topic><topic>Oxides</topic><topic>Stoichiometry</topic><topic>Thin films</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reisinger, D.</creatorcontrib><creatorcontrib>Blass, B.</creatorcontrib><creatorcontrib>Klein, J.</creatorcontrib><creatorcontrib>Philipp, J.B.</creatorcontrib><creatorcontrib>Schonecke, M.</creatorcontrib><creatorcontrib>Erb, A.</creatorcontrib><creatorcontrib>Alff, L.</creatorcontrib><creatorcontrib>Gross, R.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reisinger, D.</au><au>Blass, B.</au><au>Klein, J.</au><au>Philipp, J.B.</au><au>Schonecke, M.</au><au>Erb, A.</au><au>Alff, L.</au><au>Gross, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-unit cell layer-by-layer growth of Fe3O4, MgO, and Sr2RuO4 thin films</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><date>2003-10</date><risdate>2003</risdate><volume>77</volume><issue>5</issue><spage>619</spage><epage>621</epage><pages>619-621</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>The use of oxide materials in oxide electronics requires their controlled epitaxial growth. Recently, it was shown that Reflection High Energy Electron Diffraction (RHEED) allows the growth of oxide thin films to be monitored, even at high oxygen pressures. Here, we report the sub-unit cell molecular or block layer growth of the oxide materials Sr2RuO4, MgO, and magnetite using Pulsed Laser Deposition (PLD) from stoichiometric targets. Whereas a single RHEED intensity oscillation is found to correspond to the growth of a single unit cell for perovskites such as SrTiO3 or doped LaMnO3, in materials where the unit cell is composed of several molecular layers or blocks with identical stoichiometry, sub-unit cell molecular or block layer growth is established, resulting in several RHEED intensity oscillations during the growth of a single unit cell.</abstract><doi>10.1007/s00339-003-2105-9</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2003-10, Vol.77 (5), p.619-621
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1671436644
source Springer Nature - Complete Springer Journals
subjects Blocking
Epitaxial growth
Magnesium oxide
Oscillations
Oxides
Stoichiometry
Thin films
Unit cell
title Sub-unit cell layer-by-layer growth of Fe3O4, MgO, and Sr2RuO4 thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-unit%20cell%20layer-by-layer%20growth%20of%20Fe3O4,%20MgO,%20and%20Sr2RuO4%20thin%20films&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Reisinger,%20D.&rft.date=2003-10&rft.volume=77&rft.issue=5&rft.spage=619&rft.epage=621&rft.pages=619-621&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-003-2105-9&rft_dat=%3Cproquest_cross%3E1671436644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671436644&rft_id=info:pmid/&rfr_iscdi=true