A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry

A hybrid large-Eddy simulation/filtered-density function (LES–FDF) methodology is formulated for simulating variable density turbulent reactive flows. An indirect feedback mechanism coupled with a consistency measure based on redundant density fields contained in the different solvers is used to con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Combustion Institute 2007, Vol.31 (2), p.1711-1719
Hauptverfasser: Raman, Venkatramanan, Pitsch, Heinz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1719
container_issue 2
container_start_page 1711
container_title Proceedings of the Combustion Institute
container_volume 31
creator Raman, Venkatramanan
Pitsch, Heinz
description A hybrid large-Eddy simulation/filtered-density function (LES–FDF) methodology is formulated for simulating variable density turbulent reactive flows. An indirect feedback mechanism coupled with a consistency measure based on redundant density fields contained in the different solvers is used to construct a robust algorithm. Using this novel scheme, a partially premixed methane/air flame is simulated. To describe transport in composition space, a 16-species reduced chemistry mechanism is used along with the interaction-by-exchange with the mean (IEM) model. For the micro-mixing model, typically a constant ratio of scalar to mechanical time-scale is assumed. This parameter can have substantial variations and can strongly influence the combustion process. Here, a dynamic time-scale model is used to prescribe the mixing time-scale, which eliminates the time-scale ratio as a model constant. Two different flame configurations, namely, Sandia flames D and E are studied. Comparison of simulated radial profiles with experimental data show good agreement for both flames. The LES–FDF simulations accurately predict the increased extinction near the inlet and re-ignition further downstream. The conditional mean profiles show good agreement with experimental data for both flames.
doi_str_mv 10.1016/j.proci.2006.07.152
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671435383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S154074890600160X</els_id><sourcerecordid>1671435383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-52ca24ada18c3a99263765a826eb439035508481d533b9910cbb1d4ae68f35273</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEqXwC7j4yCWpHduxc-BQVbykShyAs-XYG9VVHsV2QP33uBQ4ctrVamZH82XZNcEFwaRabIudH40rSoyrAouC8PIkmxEpaF4KzE7TzhnOBZP1eXYRwhZjKjDls2xaIjMOwYUIQ0Tru5dF67oIHmxuId3jHrXTYKIbB9SOvp86_bujuAEU3N9pbFGcfDN1h09tp3sI6NPFDbIQtevAIrOBPiX5_WV21uouwNXPnGdv93evq8d8_fzwtFquc0NpFXNeGl0ybTWRhuq6LisqKq5lWUHDaJ0KcCyZJJZT2tQ1waZpiGUaKtlSXgo6z26OfxOe9wlCVCnfQNfpAcYpKFIJwiinkiYpPUqNH0Pw0Kqdd732e0WwOkBWW_UNWR0gKyxUgpxct0cXpBYfDrwKxsFgwDoPJio7un_9XzgGiGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671435383</pqid></control><display><type>article</type><title>A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Raman, Venkatramanan ; Pitsch, Heinz</creator><creatorcontrib>Raman, Venkatramanan ; Pitsch, Heinz</creatorcontrib><description>A hybrid large-Eddy simulation/filtered-density function (LES–FDF) methodology is formulated for simulating variable density turbulent reactive flows. An indirect feedback mechanism coupled with a consistency measure based on redundant density fields contained in the different solvers is used to construct a robust algorithm. Using this novel scheme, a partially premixed methane/air flame is simulated. To describe transport in composition space, a 16-species reduced chemistry mechanism is used along with the interaction-by-exchange with the mean (IEM) model. For the micro-mixing model, typically a constant ratio of scalar to mechanical time-scale is assumed. This parameter can have substantial variations and can strongly influence the combustion process. Here, a dynamic time-scale model is used to prescribe the mixing time-scale, which eliminates the time-scale ratio as a model constant. Two different flame configurations, namely, Sandia flames D and E are studied. Comparison of simulated radial profiles with experimental data show good agreement for both flames. The LES–FDF simulations accurately predict the increased extinction near the inlet and re-ignition further downstream. The conditional mean profiles show good agreement with experimental data for both flames.</description><identifier>ISSN: 1540-7489</identifier><identifier>EISSN: 1873-2704</identifier><identifier>DOI: 10.1016/j.proci.2006.07.152</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Accuracy ; Algorithms ; Combustion ; Computer simulation ; Density ; Detailed chemistry ; Feedback ; Filtered-density function ; Lagrangian approach ; Large-Eddy simulation ; Mathematical models ; Sandia flame series ; Turbulent flames</subject><ispartof>Proceedings of the Combustion Institute, 2007, Vol.31 (2), p.1711-1719</ispartof><rights>2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-52ca24ada18c3a99263765a826eb439035508481d533b9910cbb1d4ae68f35273</citedby><cites>FETCH-LOGICAL-c336t-52ca24ada18c3a99263765a826eb439035508481d533b9910cbb1d4ae68f35273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.proci.2006.07.152$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,4012,27910,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Raman, Venkatramanan</creatorcontrib><creatorcontrib>Pitsch, Heinz</creatorcontrib><title>A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry</title><title>Proceedings of the Combustion Institute</title><description>A hybrid large-Eddy simulation/filtered-density function (LES–FDF) methodology is formulated for simulating variable density turbulent reactive flows. An indirect feedback mechanism coupled with a consistency measure based on redundant density fields contained in the different solvers is used to construct a robust algorithm. Using this novel scheme, a partially premixed methane/air flame is simulated. To describe transport in composition space, a 16-species reduced chemistry mechanism is used along with the interaction-by-exchange with the mean (IEM) model. For the micro-mixing model, typically a constant ratio of scalar to mechanical time-scale is assumed. This parameter can have substantial variations and can strongly influence the combustion process. Here, a dynamic time-scale model is used to prescribe the mixing time-scale, which eliminates the time-scale ratio as a model constant. Two different flame configurations, namely, Sandia flames D and E are studied. Comparison of simulated radial profiles with experimental data show good agreement for both flames. The LES–FDF simulations accurately predict the increased extinction near the inlet and re-ignition further downstream. The conditional mean profiles show good agreement with experimental data for both flames.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Combustion</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Detailed chemistry</subject><subject>Feedback</subject><subject>Filtered-density function</subject><subject>Lagrangian approach</subject><subject>Large-Eddy simulation</subject><subject>Mathematical models</subject><subject>Sandia flame series</subject><subject>Turbulent flames</subject><issn>1540-7489</issn><issn>1873-2704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEqXwC7j4yCWpHduxc-BQVbykShyAs-XYG9VVHsV2QP33uBQ4ctrVamZH82XZNcEFwaRabIudH40rSoyrAouC8PIkmxEpaF4KzE7TzhnOBZP1eXYRwhZjKjDls2xaIjMOwYUIQ0Tru5dF67oIHmxuId3jHrXTYKIbB9SOvp86_bujuAEU3N9pbFGcfDN1h09tp3sI6NPFDbIQtevAIrOBPiX5_WV21uouwNXPnGdv93evq8d8_fzwtFquc0NpFXNeGl0ybTWRhuq6LisqKq5lWUHDaJ0KcCyZJJZT2tQ1waZpiGUaKtlSXgo6z26OfxOe9wlCVCnfQNfpAcYpKFIJwiinkiYpPUqNH0Pw0Kqdd732e0WwOkBWW_UNWR0gKyxUgpxct0cXpBYfDrwKxsFgwDoPJio7un_9XzgGiGg</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Raman, Venkatramanan</creator><creator>Pitsch, Heinz</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2007</creationdate><title>A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry</title><author>Raman, Venkatramanan ; Pitsch, Heinz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-52ca24ada18c3a99263765a826eb439035508481d533b9910cbb1d4ae68f35273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Combustion</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Detailed chemistry</topic><topic>Feedback</topic><topic>Filtered-density function</topic><topic>Lagrangian approach</topic><topic>Large-Eddy simulation</topic><topic>Mathematical models</topic><topic>Sandia flame series</topic><topic>Turbulent flames</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raman, Venkatramanan</creatorcontrib><creatorcontrib>Pitsch, Heinz</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the Combustion Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raman, Venkatramanan</au><au>Pitsch, Heinz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry</atitle><jtitle>Proceedings of the Combustion Institute</jtitle><date>2007</date><risdate>2007</risdate><volume>31</volume><issue>2</issue><spage>1711</spage><epage>1719</epage><pages>1711-1719</pages><issn>1540-7489</issn><eissn>1873-2704</eissn><abstract>A hybrid large-Eddy simulation/filtered-density function (LES–FDF) methodology is formulated for simulating variable density turbulent reactive flows. An indirect feedback mechanism coupled with a consistency measure based on redundant density fields contained in the different solvers is used to construct a robust algorithm. Using this novel scheme, a partially premixed methane/air flame is simulated. To describe transport in composition space, a 16-species reduced chemistry mechanism is used along with the interaction-by-exchange with the mean (IEM) model. For the micro-mixing model, typically a constant ratio of scalar to mechanical time-scale is assumed. This parameter can have substantial variations and can strongly influence the combustion process. Here, a dynamic time-scale model is used to prescribe the mixing time-scale, which eliminates the time-scale ratio as a model constant. Two different flame configurations, namely, Sandia flames D and E are studied. Comparison of simulated radial profiles with experimental data show good agreement for both flames. The LES–FDF simulations accurately predict the increased extinction near the inlet and re-ignition further downstream. The conditional mean profiles show good agreement with experimental data for both flames.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.proci.2006.07.152</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1540-7489
ispartof Proceedings of the Combustion Institute, 2007, Vol.31 (2), p.1711-1719
issn 1540-7489
1873-2704
language eng
recordid cdi_proquest_miscellaneous_1671435383
source ScienceDirect Journals (5 years ago - present)
subjects Accuracy
Algorithms
Combustion
Computer simulation
Density
Detailed chemistry
Feedback
Filtered-density function
Lagrangian approach
Large-Eddy simulation
Mathematical models
Sandia flame series
Turbulent flames
title A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20consistent%20LES/filtered-density%20function%20formulation%20for%20the%20simulation%20of%20turbulent%20flames%20with%20detailed%20chemistry&rft.jtitle=Proceedings%20of%20the%20Combustion%20Institute&rft.au=Raman,%20Venkatramanan&rft.date=2007&rft.volume=31&rft.issue=2&rft.spage=1711&rft.epage=1719&rft.pages=1711-1719&rft.issn=1540-7489&rft.eissn=1873-2704&rft_id=info:doi/10.1016/j.proci.2006.07.152&rft_dat=%3Cproquest_cross%3E1671435383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671435383&rft_id=info:pmid/&rft_els_id=S154074890600160X&rfr_iscdi=true