Analytic functions with decreasing coefficients and Hardy and Bloch spaces
The following rather surprising result is noted. (1) A function f(z) = ∑anzn such that an ↓ 0 (n → ∞) belongs to H1 if and only if ∑(an/(n + 1)) < ∞. A more subtle analysis is needed to prove that assertion (2) remains true if H1 is replaced by the predual, 1(⊂ H1), of the Bloch space. Assertion...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Edinburgh Mathematical Society 2013-06, Vol.56 (2), p.623-635 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 635 |
---|---|
container_issue | 2 |
container_start_page | 623 |
container_title | Proceedings of the Edinburgh Mathematical Society |
container_volume | 56 |
creator | Pavlovic, Miroslav |
description | The following rather surprising result is noted. (1) A function f(z) = ∑anzn such that an ↓ 0 (n → ∞) belongs to H1 if and only if ∑(an/(n + 1)) < ∞. A more subtle analysis is needed to prove that assertion (2) remains true if H1 is replaced by the predual, 1(⊂ H1), of the Bloch space. Assertion (1) extends the Hardy–Littlewood theorem, which says the following. (2) f belongs to Hp (1 < p < ∞) if and only if ∑(n + 1)p−2anp < ∞. A new proof of (2) is given and applications of (1) and (2) to the Libera transform of functions with positive coefficients are presented. The fact that the Libera operator does not map H1 to H1 is improved by proving that it does not map 1 into H1. |
doi_str_mv | 10.1017/S001309151200003X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671435174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S001309151200003X</cupid><sourcerecordid>2957964181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-47ac7bea371472c63c9c60ed8e52fccf1fed3c7bd2dd4b966dafb87ab8774e263</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCFy-rySabdI-1qFUKHlTwtmQnkzZlu1uTXaTf3vTPQRQHhhl4v_dghpBLRm8YZer2lVLGacFyltFY_OOIDJiQIuUjXhyTwVZOt_opOQthGRGlcjYgz-NG15vOQWL7BjrXNiH5ct0iMQgedXDNPIEWrXXgsOlCohuTTLU3m912V7ewSMJaA4ZzcmJ1HfDiMIfk_eH-bTJNZy-PT5PxLAVe8C4VSoOqUHPFhMpAcihAUjQjzDMLYJlFwyNhMmNEVUhptK1GSsdWAjPJh-R6n7v27WePoStXLgDWtW6w7UPJZEzmOVMiole_0GXb-3hxpLiQBRf5LpDtKfBtCB5tufZupf2mZLTcfrf8893o4QePXlXemTn-iP7X9Q1kw3wl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1346934526</pqid></control><display><type>article</type><title>Analytic functions with decreasing coefficients and Hardy and Bloch spaces</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Pavlovic, Miroslav</creator><creatorcontrib>Pavlovic, Miroslav</creatorcontrib><description>The following rather surprising result is noted. (1) A function f(z) = ∑anzn such that an ↓ 0 (n → ∞) belongs to H1 if and only if ∑(an/(n + 1)) < ∞. A more subtle analysis is needed to prove that assertion (2) remains true if H1 is replaced by the predual, 1(⊂ H1), of the Bloch space. Assertion (1) extends the Hardy–Littlewood theorem, which says the following. (2) f belongs to Hp (1 < p < ∞) if and only if ∑(n + 1)p−2anp < ∞. A new proof of (2) is given and applications of (1) and (2) to the Libera transform of functions with positive coefficients are presented. The fact that the Libera operator does not map H1 to H1 is improved by proving that it does not map 1 into H1.</description><identifier>ISSN: 0013-0915</identifier><identifier>EISSN: 1464-3839</identifier><identifier>DOI: 10.1017/S001309151200003X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Analytic functions ; Mathematical analysis ; Mathematical functions ; Proof theory ; Proving ; Theorems ; Transforms</subject><ispartof>Proceedings of the Edinburgh Mathematical Society, 2013-06, Vol.56 (2), p.623-635</ispartof><rights>Copyright © Edinburgh Mathematical Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-47ac7bea371472c63c9c60ed8e52fccf1fed3c7bd2dd4b966dafb87ab8774e263</citedby><cites>FETCH-LOGICAL-c393t-47ac7bea371472c63c9c60ed8e52fccf1fed3c7bd2dd4b966dafb87ab8774e263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S001309151200003X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Pavlovic, Miroslav</creatorcontrib><title>Analytic functions with decreasing coefficients and Hardy and Bloch spaces</title><title>Proceedings of the Edinburgh Mathematical Society</title><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><description>The following rather surprising result is noted. (1) A function f(z) = ∑anzn such that an ↓ 0 (n → ∞) belongs to H1 if and only if ∑(an/(n + 1)) < ∞. A more subtle analysis is needed to prove that assertion (2) remains true if H1 is replaced by the predual, 1(⊂ H1), of the Bloch space. Assertion (1) extends the Hardy–Littlewood theorem, which says the following. (2) f belongs to Hp (1 < p < ∞) if and only if ∑(n + 1)p−2anp < ∞. A new proof of (2) is given and applications of (1) and (2) to the Libera transform of functions with positive coefficients are presented. The fact that the Libera operator does not map H1 to H1 is improved by proving that it does not map 1 into H1.</description><subject>Analytic functions</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Proof theory</subject><subject>Proving</subject><subject>Theorems</subject><subject>Transforms</subject><issn>0013-0915</issn><issn>1464-3839</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNuCFy-rySabdI-1qFUKHlTwtmQnkzZlu1uTXaTf3vTPQRQHhhl4v_dghpBLRm8YZer2lVLGacFyltFY_OOIDJiQIuUjXhyTwVZOt_opOQthGRGlcjYgz-NG15vOQWL7BjrXNiH5ct0iMQgedXDNPIEWrXXgsOlCohuTTLU3m912V7ewSMJaA4ZzcmJ1HfDiMIfk_eH-bTJNZy-PT5PxLAVe8C4VSoOqUHPFhMpAcihAUjQjzDMLYJlFwyNhMmNEVUhptK1GSsdWAjPJh-R6n7v27WePoStXLgDWtW6w7UPJZEzmOVMiole_0GXb-3hxpLiQBRf5LpDtKfBtCB5tufZupf2mZLTcfrf8893o4QePXlXemTn-iP7X9Q1kw3wl</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Pavlovic, Miroslav</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201306</creationdate><title>Analytic functions with decreasing coefficients and Hardy and Bloch spaces</title><author>Pavlovic, Miroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-47ac7bea371472c63c9c60ed8e52fccf1fed3c7bd2dd4b966dafb87ab8774e263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analytic functions</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Proof theory</topic><topic>Proving</topic><topic>Theorems</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pavlovic, Miroslav</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pavlovic, Miroslav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic functions with decreasing coefficients and Hardy and Bloch spaces</atitle><jtitle>Proceedings of the Edinburgh Mathematical Society</jtitle><addtitle>Proceedings of the Edinburgh Mathematical Society</addtitle><date>2013-06</date><risdate>2013</risdate><volume>56</volume><issue>2</issue><spage>623</spage><epage>635</epage><pages>623-635</pages><issn>0013-0915</issn><eissn>1464-3839</eissn><abstract>The following rather surprising result is noted. (1) A function f(z) = ∑anzn such that an ↓ 0 (n → ∞) belongs to H1 if and only if ∑(an/(n + 1)) < ∞. A more subtle analysis is needed to prove that assertion (2) remains true if H1 is replaced by the predual, 1(⊂ H1), of the Bloch space. Assertion (1) extends the Hardy–Littlewood theorem, which says the following. (2) f belongs to Hp (1 < p < ∞) if and only if ∑(n + 1)p−2anp < ∞. A new proof of (2) is given and applications of (1) and (2) to the Libera transform of functions with positive coefficients are presented. The fact that the Libera operator does not map H1 to H1 is improved by proving that it does not map 1 into H1.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S001309151200003X</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-0915 |
ispartof | Proceedings of the Edinburgh Mathematical Society, 2013-06, Vol.56 (2), p.623-635 |
issn | 0013-0915 1464-3839 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671435174 |
source | EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete |
subjects | Analytic functions Mathematical analysis Mathematical functions Proof theory Proving Theorems Transforms |
title | Analytic functions with decreasing coefficients and Hardy and Bloch spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20functions%20with%20decreasing%20coefficients%20and%20Hardy%20and%20Bloch%20spaces&rft.jtitle=Proceedings%20of%20the%20Edinburgh%20Mathematical%20Society&rft.au=Pavlovic,%20Miroslav&rft.date=2013-06&rft.volume=56&rft.issue=2&rft.spage=623&rft.epage=635&rft.pages=623-635&rft.issn=0013-0915&rft.eissn=1464-3839&rft_id=info:doi/10.1017/S001309151200003X&rft_dat=%3Cproquest_cross%3E2957964181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1346934526&rft_id=info:pmid/&rft_cupid=10_1017_S001309151200003X&rfr_iscdi=true |