Combustion Rumble Prediction with Integrated Computational-Fluid-Dynamics/Low-Order-Model Methods

The pressure oscillation within combustion chambers of aeroengines and industrial gas turbines is a major technical challenge to the development of high-performance and low-emission propulsion systems. In this paper, an approach integrating computational fluid dynamics and one-dimensional linear sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of propulsion and power 2012-09, Vol.28 (5), p.1015-1025
Hauptverfasser: Yao, Zhaopu, Gao, Yuan, Zhu, Min, Dowling, A. P, Bray, K. N. C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1025
container_issue 5
container_start_page 1015
container_title Journal of propulsion and power
container_volume 28
creator Yao, Zhaopu
Gao, Yuan
Zhu, Min
Dowling, A. P
Bray, K. N. C
description The pressure oscillation within combustion chambers of aeroengines and industrial gas turbines is a major technical challenge to the development of high-performance and low-emission propulsion systems. In this paper, an approach integrating computational fluid dynamics and one-dimensional linear stability analysis is developed to predict the modes of oscillation in a combustor and their frequencies and growth rates. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone, which enables the computational fluid dynamics calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in agreement with experimental measurements. Furthermore, results from the computational fluid dynamics calculation provide the flame transfer function to describe unsteady heat release rate. Departures from ideal one-dimensional flows are described by shape factors. Combined with this information, low-order models can work out the possible oscillation modes and their initial growth rates. The approach developed here can be used in more general situations for the analysis of combustion oscillations.
doi_str_mv 10.2514/1.B34469
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671432278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417872247</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-e536b09c3a935390c8376de09543dece3e42cdb97c82b6101aaa47dc76c36e793</originalsourceid><addsrcrecordid>eNqF0VFLwzAQB_AgCs4p-BEKIviSLemlSfuo0-lgYyL6XNLk5jraZSYtY9_ezvkge_Hp4O7HH44_IdecDeKEiyEfPIAQMjshPZ4AUEiVPCU9pkRKhUzSc3IRwooxLlOpekSPXF20oSndOnpr66LC6NWjLc3PZls2y2iybvDT6wZt1OFN2-j9TVd0XLWlpY-7ta5LE4ZTt6Vzb9HTmbNYRTNsls6GS3K20FXAq9_ZJx_jp_fRC53Onyej-ynVkPCGYgKyYJkBnUECGTMpKGmRZYkAiwYBRWxskSmTxoXkjGuthbJGSQMSVQZ9cnfI3Xj31WJo8roMBqtKr9G1IedScQFxrNL_qeAqVXEsVEdvjujKtb77vlMgkwyYjP8EGu9C8LjIN76std_lnOX7WnKeH2rp6O2B6lLrP2HH7htAgIoB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365930628</pqid></control><display><type>article</type><title>Combustion Rumble Prediction with Integrated Computational-Fluid-Dynamics/Low-Order-Model Methods</title><source>Alma/SFX Local Collection</source><creator>Yao, Zhaopu ; Gao, Yuan ; Zhu, Min ; Dowling, A. P ; Bray, K. N. C</creator><creatorcontrib>Yao, Zhaopu ; Gao, Yuan ; Zhu, Min ; Dowling, A. P ; Bray, K. N. C</creatorcontrib><description>The pressure oscillation within combustion chambers of aeroengines and industrial gas turbines is a major technical challenge to the development of high-performance and low-emission propulsion systems. In this paper, an approach integrating computational fluid dynamics and one-dimensional linear stability analysis is developed to predict the modes of oscillation in a combustor and their frequencies and growth rates. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone, which enables the computational fluid dynamics calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in agreement with experimental measurements. Furthermore, results from the computational fluid dynamics calculation provide the flame transfer function to describe unsteady heat release rate. Departures from ideal one-dimensional flows are described by shape factors. Combined with this information, low-order models can work out the possible oscillation modes and their initial growth rates. The approach developed here can be used in more general situations for the analysis of combustion oscillations.</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.B34469</identifier><identifier>CODEN: JPPOEL</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Acoustics ; Combustion ; Computational fluid dynamics ; Mathematical models ; Oscillation modes ; Oscillations ; Stability analysis ; Wave propagation</subject><ispartof>Journal of propulsion and power, 2012-09, Vol.28 (5), p.1015-1025</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Sep-Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-e536b09c3a935390c8376de09543dece3e42cdb97c82b6101aaa47dc76c36e793</citedby><cites>FETCH-LOGICAL-a351t-e536b09c3a935390c8376de09543dece3e42cdb97c82b6101aaa47dc76c36e793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yao, Zhaopu</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Zhu, Min</creatorcontrib><creatorcontrib>Dowling, A. P</creatorcontrib><creatorcontrib>Bray, K. N. C</creatorcontrib><title>Combustion Rumble Prediction with Integrated Computational-Fluid-Dynamics/Low-Order-Model Methods</title><title>Journal of propulsion and power</title><description>The pressure oscillation within combustion chambers of aeroengines and industrial gas turbines is a major technical challenge to the development of high-performance and low-emission propulsion systems. In this paper, an approach integrating computational fluid dynamics and one-dimensional linear stability analysis is developed to predict the modes of oscillation in a combustor and their frequencies and growth rates. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone, which enables the computational fluid dynamics calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in agreement with experimental measurements. Furthermore, results from the computational fluid dynamics calculation provide the flame transfer function to describe unsteady heat release rate. Departures from ideal one-dimensional flows are described by shape factors. Combined with this information, low-order models can work out the possible oscillation modes and their initial growth rates. The approach developed here can be used in more general situations for the analysis of combustion oscillations.</description><subject>Acoustics</subject><subject>Combustion</subject><subject>Computational fluid dynamics</subject><subject>Mathematical models</subject><subject>Oscillation modes</subject><subject>Oscillations</subject><subject>Stability analysis</subject><subject>Wave propagation</subject><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0VFLwzAQB_AgCs4p-BEKIviSLemlSfuo0-lgYyL6XNLk5jraZSYtY9_ezvkge_Hp4O7HH44_IdecDeKEiyEfPIAQMjshPZ4AUEiVPCU9pkRKhUzSc3IRwooxLlOpekSPXF20oSndOnpr66LC6NWjLc3PZls2y2iybvDT6wZt1OFN2-j9TVd0XLWlpY-7ta5LE4ZTt6Vzb9HTmbNYRTNsls6GS3K20FXAq9_ZJx_jp_fRC53Onyej-ynVkPCGYgKyYJkBnUECGTMpKGmRZYkAiwYBRWxskSmTxoXkjGuthbJGSQMSVQZ9cnfI3Xj31WJo8roMBqtKr9G1IedScQFxrNL_qeAqVXEsVEdvjujKtb77vlMgkwyYjP8EGu9C8LjIN76std_lnOX7WnKeH2rp6O2B6lLrP2HH7htAgIoB</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Yao, Zhaopu</creator><creator>Gao, Yuan</creator><creator>Zhu, Min</creator><creator>Dowling, A. P</creator><creator>Bray, K. N. C</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20120901</creationdate><title>Combustion Rumble Prediction with Integrated Computational-Fluid-Dynamics/Low-Order-Model Methods</title><author>Yao, Zhaopu ; Gao, Yuan ; Zhu, Min ; Dowling, A. P ; Bray, K. N. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-e536b09c3a935390c8376de09543dece3e42cdb97c82b6101aaa47dc76c36e793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustics</topic><topic>Combustion</topic><topic>Computational fluid dynamics</topic><topic>Mathematical models</topic><topic>Oscillation modes</topic><topic>Oscillations</topic><topic>Stability analysis</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Zhaopu</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Zhu, Min</creatorcontrib><creatorcontrib>Dowling, A. P</creatorcontrib><creatorcontrib>Bray, K. N. C</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Zhaopu</au><au>Gao, Yuan</au><au>Zhu, Min</au><au>Dowling, A. P</au><au>Bray, K. N. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combustion Rumble Prediction with Integrated Computational-Fluid-Dynamics/Low-Order-Model Methods</atitle><jtitle>Journal of propulsion and power</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>28</volume><issue>5</issue><spage>1015</spage><epage>1025</epage><pages>1015-1025</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><coden>JPPOEL</coden><abstract>The pressure oscillation within combustion chambers of aeroengines and industrial gas turbines is a major technical challenge to the development of high-performance and low-emission propulsion systems. In this paper, an approach integrating computational fluid dynamics and one-dimensional linear stability analysis is developed to predict the modes of oscillation in a combustor and their frequencies and growth rates. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone, which enables the computational fluid dynamics calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in agreement with experimental measurements. Furthermore, results from the computational fluid dynamics calculation provide the flame transfer function to describe unsteady heat release rate. Departures from ideal one-dimensional flows are described by shape factors. Combined with this information, low-order models can work out the possible oscillation modes and their initial growth rates. The approach developed here can be used in more general situations for the analysis of combustion oscillations.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.B34469</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-4658
ispartof Journal of propulsion and power, 2012-09, Vol.28 (5), p.1015-1025
issn 0748-4658
1533-3876
language eng
recordid cdi_proquest_miscellaneous_1671432278
source Alma/SFX Local Collection
subjects Acoustics
Combustion
Computational fluid dynamics
Mathematical models
Oscillation modes
Oscillations
Stability analysis
Wave propagation
title Combustion Rumble Prediction with Integrated Computational-Fluid-Dynamics/Low-Order-Model Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combustion%20Rumble%20Prediction%20with%20Integrated%20Computational-Fluid-Dynamics/Low-Order-Model%20Methods&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Yao,%20Zhaopu&rft.date=2012-09-01&rft.volume=28&rft.issue=5&rft.spage=1015&rft.epage=1025&rft.pages=1015-1025&rft.issn=0748-4658&rft.eissn=1533-3876&rft.coden=JPPOEL&rft_id=info:doi/10.2514/1.B34469&rft_dat=%3Cproquest_cross%3E1417872247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365930628&rft_id=info:pmid/&rfr_iscdi=true