Combustion Rumble Prediction with Integrated Computational-Fluid-Dynamics/Low-Order-Model Methods
The pressure oscillation within combustion chambers of aeroengines and industrial gas turbines is a major technical challenge to the development of high-performance and low-emission propulsion systems. In this paper, an approach integrating computational fluid dynamics and one-dimensional linear sta...
Gespeichert in:
Veröffentlicht in: | Journal of propulsion and power 2012-09, Vol.28 (5), p.1015-1025 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1025 |
---|---|
container_issue | 5 |
container_start_page | 1015 |
container_title | Journal of propulsion and power |
container_volume | 28 |
creator | Yao, Zhaopu Gao, Yuan Zhu, Min Dowling, A. P Bray, K. N. C |
description | The pressure oscillation within combustion chambers of aeroengines and industrial gas turbines is a major technical challenge to the development of high-performance and low-emission propulsion systems. In this paper, an approach integrating computational fluid dynamics and one-dimensional linear stability analysis is developed to predict the modes of oscillation in a combustor and their frequencies and growth rates. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone, which enables the computational fluid dynamics calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in agreement with experimental measurements. Furthermore, results from the computational fluid dynamics calculation provide the flame transfer function to describe unsteady heat release rate. Departures from ideal one-dimensional flows are described by shape factors. Combined with this information, low-order models can work out the possible oscillation modes and their initial growth rates. The approach developed here can be used in more general situations for the analysis of combustion oscillations. |
doi_str_mv | 10.2514/1.B34469 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671432278</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1417872247</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-e536b09c3a935390c8376de09543dece3e42cdb97c82b6101aaa47dc76c36e793</originalsourceid><addsrcrecordid>eNqF0VFLwzAQB_AgCs4p-BEKIviSLemlSfuo0-lgYyL6XNLk5jraZSYtY9_ezvkge_Hp4O7HH44_IdecDeKEiyEfPIAQMjshPZ4AUEiVPCU9pkRKhUzSc3IRwooxLlOpekSPXF20oSndOnpr66LC6NWjLc3PZls2y2iybvDT6wZt1OFN2-j9TVd0XLWlpY-7ta5LE4ZTt6Vzb9HTmbNYRTNsls6GS3K20FXAq9_ZJx_jp_fRC53Onyej-ynVkPCGYgKyYJkBnUECGTMpKGmRZYkAiwYBRWxskSmTxoXkjGuthbJGSQMSVQZ9cnfI3Xj31WJo8roMBqtKr9G1IedScQFxrNL_qeAqVXEsVEdvjujKtb77vlMgkwyYjP8EGu9C8LjIN76std_lnOX7WnKeH2rp6O2B6lLrP2HH7htAgIoB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365930628</pqid></control><display><type>article</type><title>Combustion Rumble Prediction with Integrated Computational-Fluid-Dynamics/Low-Order-Model Methods</title><source>Alma/SFX Local Collection</source><creator>Yao, Zhaopu ; Gao, Yuan ; Zhu, Min ; Dowling, A. P ; Bray, K. N. C</creator><creatorcontrib>Yao, Zhaopu ; Gao, Yuan ; Zhu, Min ; Dowling, A. P ; Bray, K. N. C</creatorcontrib><description>The pressure oscillation within combustion chambers of aeroengines and industrial gas turbines is a major technical challenge to the development of high-performance and low-emission propulsion systems. In this paper, an approach integrating computational fluid dynamics and one-dimensional linear stability analysis is developed to predict the modes of oscillation in a combustor and their frequencies and growth rates. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone, which enables the computational fluid dynamics calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in agreement with experimental measurements. Furthermore, results from the computational fluid dynamics calculation provide the flame transfer function to describe unsteady heat release rate. Departures from ideal one-dimensional flows are described by shape factors. Combined with this information, low-order models can work out the possible oscillation modes and their initial growth rates. The approach developed here can be used in more general situations for the analysis of combustion oscillations.</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.B34469</identifier><identifier>CODEN: JPPOEL</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Acoustics ; Combustion ; Computational fluid dynamics ; Mathematical models ; Oscillation modes ; Oscillations ; Stability analysis ; Wave propagation</subject><ispartof>Journal of propulsion and power, 2012-09, Vol.28 (5), p.1015-1025</ispartof><rights>Copyright American Institute of Aeronautics and Astronautics Sep-Oct 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-e536b09c3a935390c8376de09543dece3e42cdb97c82b6101aaa47dc76c36e793</citedby><cites>FETCH-LOGICAL-a351t-e536b09c3a935390c8376de09543dece3e42cdb97c82b6101aaa47dc76c36e793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Yao, Zhaopu</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Zhu, Min</creatorcontrib><creatorcontrib>Dowling, A. P</creatorcontrib><creatorcontrib>Bray, K. N. C</creatorcontrib><title>Combustion Rumble Prediction with Integrated Computational-Fluid-Dynamics/Low-Order-Model Methods</title><title>Journal of propulsion and power</title><description>The pressure oscillation within combustion chambers of aeroengines and industrial gas turbines is a major technical challenge to the development of high-performance and low-emission propulsion systems. In this paper, an approach integrating computational fluid dynamics and one-dimensional linear stability analysis is developed to predict the modes of oscillation in a combustor and their frequencies and growth rates. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone, which enables the computational fluid dynamics calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in agreement with experimental measurements. Furthermore, results from the computational fluid dynamics calculation provide the flame transfer function to describe unsteady heat release rate. Departures from ideal one-dimensional flows are described by shape factors. Combined with this information, low-order models can work out the possible oscillation modes and their initial growth rates. The approach developed here can be used in more general situations for the analysis of combustion oscillations.</description><subject>Acoustics</subject><subject>Combustion</subject><subject>Computational fluid dynamics</subject><subject>Mathematical models</subject><subject>Oscillation modes</subject><subject>Oscillations</subject><subject>Stability analysis</subject><subject>Wave propagation</subject><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0VFLwzAQB_AgCs4p-BEKIviSLemlSfuo0-lgYyL6XNLk5jraZSYtY9_ezvkge_Hp4O7HH44_IdecDeKEiyEfPIAQMjshPZ4AUEiVPCU9pkRKhUzSc3IRwooxLlOpekSPXF20oSndOnpr66LC6NWjLc3PZls2y2iybvDT6wZt1OFN2-j9TVd0XLWlpY-7ta5LE4ZTt6Vzb9HTmbNYRTNsls6GS3K20FXAq9_ZJx_jp_fRC53Onyej-ynVkPCGYgKyYJkBnUECGTMpKGmRZYkAiwYBRWxskSmTxoXkjGuthbJGSQMSVQZ9cnfI3Xj31WJo8roMBqtKr9G1IedScQFxrNL_qeAqVXEsVEdvjujKtb77vlMgkwyYjP8EGu9C8LjIN76std_lnOX7WnKeH2rp6O2B6lLrP2HH7htAgIoB</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Yao, Zhaopu</creator><creator>Gao, Yuan</creator><creator>Zhu, Min</creator><creator>Dowling, A. P</creator><creator>Bray, K. N. C</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20120901</creationdate><title>Combustion Rumble Prediction with Integrated Computational-Fluid-Dynamics/Low-Order-Model Methods</title><author>Yao, Zhaopu ; Gao, Yuan ; Zhu, Min ; Dowling, A. P ; Bray, K. N. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-e536b09c3a935390c8376de09543dece3e42cdb97c82b6101aaa47dc76c36e793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustics</topic><topic>Combustion</topic><topic>Computational fluid dynamics</topic><topic>Mathematical models</topic><topic>Oscillation modes</topic><topic>Oscillations</topic><topic>Stability analysis</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Zhaopu</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Zhu, Min</creatorcontrib><creatorcontrib>Dowling, A. P</creatorcontrib><creatorcontrib>Bray, K. N. C</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Zhaopu</au><au>Gao, Yuan</au><au>Zhu, Min</au><au>Dowling, A. P</au><au>Bray, K. N. C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combustion Rumble Prediction with Integrated Computational-Fluid-Dynamics/Low-Order-Model Methods</atitle><jtitle>Journal of propulsion and power</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>28</volume><issue>5</issue><spage>1015</spage><epage>1025</epage><pages>1015-1025</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><coden>JPPOEL</coden><abstract>The pressure oscillation within combustion chambers of aeroengines and industrial gas turbines is a major technical challenge to the development of high-performance and low-emission propulsion systems. In this paper, an approach integrating computational fluid dynamics and one-dimensional linear stability analysis is developed to predict the modes of oscillation in a combustor and their frequencies and growth rates. Linear acoustic theory was used to describe the acoustic waves propagating upstream and downstream of the combustion zone, which enables the computational fluid dynamics calculation to be efficiently concentrated on the combustion zone. A combustion oscillation was found to occur with its predicted frequency in agreement with experimental measurements. Furthermore, results from the computational fluid dynamics calculation provide the flame transfer function to describe unsteady heat release rate. Departures from ideal one-dimensional flows are described by shape factors. Combined with this information, low-order models can work out the possible oscillation modes and their initial growth rates. The approach developed here can be used in more general situations for the analysis of combustion oscillations.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.B34469</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-4658 |
ispartof | Journal of propulsion and power, 2012-09, Vol.28 (5), p.1015-1025 |
issn | 0748-4658 1533-3876 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671432278 |
source | Alma/SFX Local Collection |
subjects | Acoustics Combustion Computational fluid dynamics Mathematical models Oscillation modes Oscillations Stability analysis Wave propagation |
title | Combustion Rumble Prediction with Integrated Computational-Fluid-Dynamics/Low-Order-Model Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combustion%20Rumble%20Prediction%20with%20Integrated%20Computational-Fluid-Dynamics/Low-Order-Model%20Methods&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Yao,%20Zhaopu&rft.date=2012-09-01&rft.volume=28&rft.issue=5&rft.spage=1015&rft.epage=1025&rft.pages=1015-1025&rft.issn=0748-4658&rft.eissn=1533-3876&rft.coden=JPPOEL&rft_id=info:doi/10.2514/1.B34469&rft_dat=%3Cproquest_cross%3E1417872247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365930628&rft_id=info:pmid/&rfr_iscdi=true |