Prediction of swelling pressures of expansive soils using artificial neural networks

Swelling behavior of expansive soil is a complicated phenomenon. In order to cope with the complications in describing the swelling behavior of expansive soil, researchers developed alternative approaches. In this paper, the prediction model of transmitted lateral swelling pressure, and vertical swe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in engineering software (1992) 2010-04, Vol.41 (4), p.647-655
Hauptverfasser: Ikizler, S. Banu, Aytekin, Mustafa, Vekli, Mustafa, Kocabaş, Fikret
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 655
container_issue 4
container_start_page 647
container_title Advances in engineering software (1992)
container_volume 41
creator Ikizler, S. Banu
Aytekin, Mustafa
Vekli, Mustafa
Kocabaş, Fikret
description Swelling behavior of expansive soil is a complicated phenomenon. In order to cope with the complications in describing the swelling behavior of expansive soil, researchers developed alternative approaches. In this paper, the prediction model of transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure was developed using artificial neural network (ANN) approach. In the first stage of this study, the lateral and vertical swelling pressures were measured with different thicknesses of expanded polystyrene (EPS) geofoam placed between one of the vertical walls of the steel testing box and the expansive soil. Then, artificial neural network was trained using these pressures for prediction transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure. Results obtained from this study showed that neural network-based prediction models could satisfactorily be used in obtaining the swelling pressures of the expansive soils.
doi_str_mv 10.1016/j.advengsoft.2009.12.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671432042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0965997809002579</els_id><sourcerecordid>1671432042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-740e4a7de60a5f20d6afbcc10072d888cebd59d5dc01be1b14580ce10b7106c23</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhH0AifL4DzlySdh18zxCxUuqBIdythx7U7mkcfEmLfx7EorEkcuOtJoZaT4hIoQEAfObTaLtnro1-6ZPJECVoEwAshMxgyrP4qoqyjNxzrwBwBQkzsTqNZB1pne-i3wT8YHa1nXraBeIeRjP9KXPne7Y7Sli71qOBp4sOvSuccbpNupoCD_SH3x450tx2uiW6epXL8Tbw_1q8RQvXx6fF7fL2Mwz7OMiBUp1YSkHnTUSbK6b2hgEKKQty9JQbbPKZtYA1oQ1plkJhhDqAiE3cn4hro-9u-A_BuJebR2bcYHuyA-sMC8wnUtIJ2t5tJrgmQM1ahfcVocvhaAmeGqj_uCpCZ5CqUZ4Y_TuGKVxyt5RUGwcdWbkFsj0ynr3f8k3eHSB8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671432042</pqid></control><display><type>article</type><title>Prediction of swelling pressures of expansive soils using artificial neural networks</title><source>Elsevier ScienceDirect Journals</source><creator>Ikizler, S. Banu ; Aytekin, Mustafa ; Vekli, Mustafa ; Kocabaş, Fikret</creator><creatorcontrib>Ikizler, S. Banu ; Aytekin, Mustafa ; Vekli, Mustafa ; Kocabaş, Fikret</creatorcontrib><description>Swelling behavior of expansive soil is a complicated phenomenon. In order to cope with the complications in describing the swelling behavior of expansive soil, researchers developed alternative approaches. In this paper, the prediction model of transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure was developed using artificial neural network (ANN) approach. In the first stage of this study, the lateral and vertical swelling pressures were measured with different thicknesses of expanded polystyrene (EPS) geofoam placed between one of the vertical walls of the steel testing box and the expansive soil. Then, artificial neural network was trained using these pressures for prediction transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure. Results obtained from this study showed that neural network-based prediction models could satisfactorily be used in obtaining the swelling pressures of the expansive soils.</description><identifier>ISSN: 0965-9978</identifier><identifier>DOI: 10.1016/j.advengsoft.2009.12.005</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Artificial neural network (ANN) ; Artificial neural networks ; Expanded polystyrene foam ; Expansion ; Expansive soil ; Learning theory ; Mathematical models ; Neural networks ; Soils ; Structural steels ; Swelling ; Swelling pressure</subject><ispartof>Advances in engineering software (1992), 2010-04, Vol.41 (4), p.647-655</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-740e4a7de60a5f20d6afbcc10072d888cebd59d5dc01be1b14580ce10b7106c23</citedby><cites>FETCH-LOGICAL-c351t-740e4a7de60a5f20d6afbcc10072d888cebd59d5dc01be1b14580ce10b7106c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.advengsoft.2009.12.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Ikizler, S. Banu</creatorcontrib><creatorcontrib>Aytekin, Mustafa</creatorcontrib><creatorcontrib>Vekli, Mustafa</creatorcontrib><creatorcontrib>Kocabaş, Fikret</creatorcontrib><title>Prediction of swelling pressures of expansive soils using artificial neural networks</title><title>Advances in engineering software (1992)</title><description>Swelling behavior of expansive soil is a complicated phenomenon. In order to cope with the complications in describing the swelling behavior of expansive soil, researchers developed alternative approaches. In this paper, the prediction model of transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure was developed using artificial neural network (ANN) approach. In the first stage of this study, the lateral and vertical swelling pressures were measured with different thicknesses of expanded polystyrene (EPS) geofoam placed between one of the vertical walls of the steel testing box and the expansive soil. Then, artificial neural network was trained using these pressures for prediction transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure. Results obtained from this study showed that neural network-based prediction models could satisfactorily be used in obtaining the swelling pressures of the expansive soils.</description><subject>Artificial neural network (ANN)</subject><subject>Artificial neural networks</subject><subject>Expanded polystyrene foam</subject><subject>Expansion</subject><subject>Expansive soil</subject><subject>Learning theory</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Soils</subject><subject>Structural steels</subject><subject>Swelling</subject><subject>Swelling pressure</subject><issn>0965-9978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhH0AifL4DzlySdh18zxCxUuqBIdythx7U7mkcfEmLfx7EorEkcuOtJoZaT4hIoQEAfObTaLtnro1-6ZPJECVoEwAshMxgyrP4qoqyjNxzrwBwBQkzsTqNZB1pne-i3wT8YHa1nXraBeIeRjP9KXPne7Y7Sli71qOBp4sOvSuccbpNupoCD_SH3x450tx2uiW6epXL8Tbw_1q8RQvXx6fF7fL2Mwz7OMiBUp1YSkHnTUSbK6b2hgEKKQty9JQbbPKZtYA1oQ1plkJhhDqAiE3cn4hro-9u-A_BuJebR2bcYHuyA-sMC8wnUtIJ2t5tJrgmQM1ahfcVocvhaAmeGqj_uCpCZ5CqUZ4Y_TuGKVxyt5RUGwcdWbkFsj0ynr3f8k3eHSB8Q</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Ikizler, S. Banu</creator><creator>Aytekin, Mustafa</creator><creator>Vekli, Mustafa</creator><creator>Kocabaş, Fikret</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100401</creationdate><title>Prediction of swelling pressures of expansive soils using artificial neural networks</title><author>Ikizler, S. Banu ; Aytekin, Mustafa ; Vekli, Mustafa ; Kocabaş, Fikret</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-740e4a7de60a5f20d6afbcc10072d888cebd59d5dc01be1b14580ce10b7106c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural network (ANN)</topic><topic>Artificial neural networks</topic><topic>Expanded polystyrene foam</topic><topic>Expansion</topic><topic>Expansive soil</topic><topic>Learning theory</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Soils</topic><topic>Structural steels</topic><topic>Swelling</topic><topic>Swelling pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikizler, S. Banu</creatorcontrib><creatorcontrib>Aytekin, Mustafa</creatorcontrib><creatorcontrib>Vekli, Mustafa</creatorcontrib><creatorcontrib>Kocabaş, Fikret</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in engineering software (1992)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikizler, S. Banu</au><au>Aytekin, Mustafa</au><au>Vekli, Mustafa</au><au>Kocabaş, Fikret</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of swelling pressures of expansive soils using artificial neural networks</atitle><jtitle>Advances in engineering software (1992)</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>41</volume><issue>4</issue><spage>647</spage><epage>655</epage><pages>647-655</pages><issn>0965-9978</issn><abstract>Swelling behavior of expansive soil is a complicated phenomenon. In order to cope with the complications in describing the swelling behavior of expansive soil, researchers developed alternative approaches. In this paper, the prediction model of transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure was developed using artificial neural network (ANN) approach. In the first stage of this study, the lateral and vertical swelling pressures were measured with different thicknesses of expanded polystyrene (EPS) geofoam placed between one of the vertical walls of the steel testing box and the expansive soil. Then, artificial neural network was trained using these pressures for prediction transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure. Results obtained from this study showed that neural network-based prediction models could satisfactorily be used in obtaining the swelling pressures of the expansive soils.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.advengsoft.2009.12.005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-9978
ispartof Advances in engineering software (1992), 2010-04, Vol.41 (4), p.647-655
issn 0965-9978
language eng
recordid cdi_proquest_miscellaneous_1671432042
source Elsevier ScienceDirect Journals
subjects Artificial neural network (ANN)
Artificial neural networks
Expanded polystyrene foam
Expansion
Expansive soil
Learning theory
Mathematical models
Neural networks
Soils
Structural steels
Swelling
Swelling pressure
title Prediction of swelling pressures of expansive soils using artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20swelling%20pressures%20of%20expansive%20soils%20using%20artificial%20neural%20networks&rft.jtitle=Advances%20in%20engineering%20software%20(1992)&rft.au=Ikizler,%20S.%20Banu&rft.date=2010-04-01&rft.volume=41&rft.issue=4&rft.spage=647&rft.epage=655&rft.pages=647-655&rft.issn=0965-9978&rft_id=info:doi/10.1016/j.advengsoft.2009.12.005&rft_dat=%3Cproquest_cross%3E1671432042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671432042&rft_id=info:pmid/&rft_els_id=S0965997809002579&rfr_iscdi=true