Prediction of swelling pressures of expansive soils using artificial neural networks
Swelling behavior of expansive soil is a complicated phenomenon. In order to cope with the complications in describing the swelling behavior of expansive soil, researchers developed alternative approaches. In this paper, the prediction model of transmitted lateral swelling pressure, and vertical swe...
Gespeichert in:
Veröffentlicht in: | Advances in engineering software (1992) 2010-04, Vol.41 (4), p.647-655 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 655 |
---|---|
container_issue | 4 |
container_start_page | 647 |
container_title | Advances in engineering software (1992) |
container_volume | 41 |
creator | Ikizler, S. Banu Aytekin, Mustafa Vekli, Mustafa Kocabaş, Fikret |
description | Swelling behavior of expansive soil is a complicated phenomenon. In order to cope with the complications in describing the swelling behavior of expansive soil, researchers developed alternative approaches. In this paper, the prediction model of transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure was developed using artificial neural network (ANN) approach. In the first stage of this study, the lateral and vertical swelling pressures were measured with different thicknesses of expanded polystyrene (EPS) geofoam placed between one of the vertical walls of the steel testing box and the expansive soil. Then, artificial neural network was trained using these pressures for prediction transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure. Results obtained from this study showed that neural network-based prediction models could satisfactorily be used in obtaining the swelling pressures of the expansive soils. |
doi_str_mv | 10.1016/j.advengsoft.2009.12.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671432042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0965997809002579</els_id><sourcerecordid>1671432042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-740e4a7de60a5f20d6afbcc10072d888cebd59d5dc01be1b14580ce10b7106c23</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhH0AifL4DzlySdh18zxCxUuqBIdythx7U7mkcfEmLfx7EorEkcuOtJoZaT4hIoQEAfObTaLtnro1-6ZPJECVoEwAshMxgyrP4qoqyjNxzrwBwBQkzsTqNZB1pne-i3wT8YHa1nXraBeIeRjP9KXPne7Y7Sli71qOBp4sOvSuccbpNupoCD_SH3x450tx2uiW6epXL8Tbw_1q8RQvXx6fF7fL2Mwz7OMiBUp1YSkHnTUSbK6b2hgEKKQty9JQbbPKZtYA1oQ1plkJhhDqAiE3cn4hro-9u-A_BuJebR2bcYHuyA-sMC8wnUtIJ2t5tJrgmQM1ahfcVocvhaAmeGqj_uCpCZ5CqUZ4Y_TuGKVxyt5RUGwcdWbkFsj0ynr3f8k3eHSB8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671432042</pqid></control><display><type>article</type><title>Prediction of swelling pressures of expansive soils using artificial neural networks</title><source>Elsevier ScienceDirect Journals</source><creator>Ikizler, S. Banu ; Aytekin, Mustafa ; Vekli, Mustafa ; Kocabaş, Fikret</creator><creatorcontrib>Ikizler, S. Banu ; Aytekin, Mustafa ; Vekli, Mustafa ; Kocabaş, Fikret</creatorcontrib><description>Swelling behavior of expansive soil is a complicated phenomenon. In order to cope with the complications in describing the swelling behavior of expansive soil, researchers developed alternative approaches. In this paper, the prediction model of transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure was developed using artificial neural network (ANN) approach. In the first stage of this study, the lateral and vertical swelling pressures were measured with different thicknesses of expanded polystyrene (EPS) geofoam placed between one of the vertical walls of the steel testing box and the expansive soil. Then, artificial neural network was trained using these pressures for prediction transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure. Results obtained from this study showed that neural network-based prediction models could satisfactorily be used in obtaining the swelling pressures of the expansive soils.</description><identifier>ISSN: 0965-9978</identifier><identifier>DOI: 10.1016/j.advengsoft.2009.12.005</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Artificial neural network (ANN) ; Artificial neural networks ; Expanded polystyrene foam ; Expansion ; Expansive soil ; Learning theory ; Mathematical models ; Neural networks ; Soils ; Structural steels ; Swelling ; Swelling pressure</subject><ispartof>Advances in engineering software (1992), 2010-04, Vol.41 (4), p.647-655</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-740e4a7de60a5f20d6afbcc10072d888cebd59d5dc01be1b14580ce10b7106c23</citedby><cites>FETCH-LOGICAL-c351t-740e4a7de60a5f20d6afbcc10072d888cebd59d5dc01be1b14580ce10b7106c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.advengsoft.2009.12.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Ikizler, S. Banu</creatorcontrib><creatorcontrib>Aytekin, Mustafa</creatorcontrib><creatorcontrib>Vekli, Mustafa</creatorcontrib><creatorcontrib>Kocabaş, Fikret</creatorcontrib><title>Prediction of swelling pressures of expansive soils using artificial neural networks</title><title>Advances in engineering software (1992)</title><description>Swelling behavior of expansive soil is a complicated phenomenon. In order to cope with the complications in describing the swelling behavior of expansive soil, researchers developed alternative approaches. In this paper, the prediction model of transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure was developed using artificial neural network (ANN) approach. In the first stage of this study, the lateral and vertical swelling pressures were measured with different thicknesses of expanded polystyrene (EPS) geofoam placed between one of the vertical walls of the steel testing box and the expansive soil. Then, artificial neural network was trained using these pressures for prediction transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure. Results obtained from this study showed that neural network-based prediction models could satisfactorily be used in obtaining the swelling pressures of the expansive soils.</description><subject>Artificial neural network (ANN)</subject><subject>Artificial neural networks</subject><subject>Expanded polystyrene foam</subject><subject>Expansion</subject><subject>Expansive soil</subject><subject>Learning theory</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Soils</subject><subject>Structural steels</subject><subject>Swelling</subject><subject>Swelling pressure</subject><issn>0965-9978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhH0AifL4DzlySdh18zxCxUuqBIdythx7U7mkcfEmLfx7EorEkcuOtJoZaT4hIoQEAfObTaLtnro1-6ZPJECVoEwAshMxgyrP4qoqyjNxzrwBwBQkzsTqNZB1pne-i3wT8YHa1nXraBeIeRjP9KXPne7Y7Sli71qOBp4sOvSuccbpNupoCD_SH3x450tx2uiW6epXL8Tbw_1q8RQvXx6fF7fL2Mwz7OMiBUp1YSkHnTUSbK6b2hgEKKQty9JQbbPKZtYA1oQ1plkJhhDqAiE3cn4hro-9u-A_BuJebR2bcYHuyA-sMC8wnUtIJ2t5tJrgmQM1ahfcVocvhaAmeGqj_uCpCZ5CqUZ4Y_TuGKVxyt5RUGwcdWbkFsj0ynr3f8k3eHSB8Q</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Ikizler, S. Banu</creator><creator>Aytekin, Mustafa</creator><creator>Vekli, Mustafa</creator><creator>Kocabaş, Fikret</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100401</creationdate><title>Prediction of swelling pressures of expansive soils using artificial neural networks</title><author>Ikizler, S. Banu ; Aytekin, Mustafa ; Vekli, Mustafa ; Kocabaş, Fikret</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-740e4a7de60a5f20d6afbcc10072d888cebd59d5dc01be1b14580ce10b7106c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural network (ANN)</topic><topic>Artificial neural networks</topic><topic>Expanded polystyrene foam</topic><topic>Expansion</topic><topic>Expansive soil</topic><topic>Learning theory</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Soils</topic><topic>Structural steels</topic><topic>Swelling</topic><topic>Swelling pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikizler, S. Banu</creatorcontrib><creatorcontrib>Aytekin, Mustafa</creatorcontrib><creatorcontrib>Vekli, Mustafa</creatorcontrib><creatorcontrib>Kocabaş, Fikret</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in engineering software (1992)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikizler, S. Banu</au><au>Aytekin, Mustafa</au><au>Vekli, Mustafa</au><au>Kocabaş, Fikret</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of swelling pressures of expansive soils using artificial neural networks</atitle><jtitle>Advances in engineering software (1992)</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>41</volume><issue>4</issue><spage>647</spage><epage>655</epage><pages>647-655</pages><issn>0965-9978</issn><abstract>Swelling behavior of expansive soil is a complicated phenomenon. In order to cope with the complications in describing the swelling behavior of expansive soil, researchers developed alternative approaches. In this paper, the prediction model of transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure was developed using artificial neural network (ANN) approach. In the first stage of this study, the lateral and vertical swelling pressures were measured with different thicknesses of expanded polystyrene (EPS) geofoam placed between one of the vertical walls of the steel testing box and the expansive soil. Then, artificial neural network was trained using these pressures for prediction transmitted lateral swelling pressure, and vertical swelling pressures on a retaining structure. Results obtained from this study showed that neural network-based prediction models could satisfactorily be used in obtaining the swelling pressures of the expansive soils.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.advengsoft.2009.12.005</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-9978 |
ispartof | Advances in engineering software (1992), 2010-04, Vol.41 (4), p.647-655 |
issn | 0965-9978 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671432042 |
source | Elsevier ScienceDirect Journals |
subjects | Artificial neural network (ANN) Artificial neural networks Expanded polystyrene foam Expansion Expansive soil Learning theory Mathematical models Neural networks Soils Structural steels Swelling Swelling pressure |
title | Prediction of swelling pressures of expansive soils using artificial neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20swelling%20pressures%20of%20expansive%20soils%20using%20artificial%20neural%20networks&rft.jtitle=Advances%20in%20engineering%20software%20(1992)&rft.au=Ikizler,%20S.%20Banu&rft.date=2010-04-01&rft.volume=41&rft.issue=4&rft.spage=647&rft.epage=655&rft.pages=647-655&rft.issn=0965-9978&rft_id=info:doi/10.1016/j.advengsoft.2009.12.005&rft_dat=%3Cproquest_cross%3E1671432042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671432042&rft_id=info:pmid/&rft_els_id=S0965997809002579&rfr_iscdi=true |