Modelling of polymer fluid flow and residence time distribution in twin screw extruder using fictitious domain method
The flow behaviour of a polymer melt in the conveying region of an intermeshing corotating twin screw extruder was studied using the combination of mixed finite element and fictitious domain method. The model was a combination of the governing equations of continuity and momentum with Carreau rheolo...
Gespeichert in:
Veröffentlicht in: | Plastics, rubber & composites rubber & composites, 2011-10, Vol.40 (8), p.387-396 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 396 |
---|---|
container_issue | 8 |
container_start_page | 387 |
container_title | Plastics, rubber & composites |
container_volume | 40 |
creator | Sobhani, H. Ghoreishy, M. H. R. Razavi-Nouri, M. Anderson, P. D. Meijer, H. H. E. |
description | The flow behaviour of a polymer melt in the conveying region of an intermeshing corotating twin screw extruder was studied using the combination of mixed finite element and fictitious domain method. The model was a combination of the governing equations of continuity and momentum with Carreau rheological model in a three-dimensional Cartesian coordinate system. The equations were solved by the use of a mixed Galerkin finite element technique. The Picard's iterative procedure was used to handle the non-linear nature of the derived equations. The particle tracking technique was used to obtain residence time distribution and analyse distributive mixing in conveying region. The shear rate distribution was investigated as a criterion for dispersive mixing. The applicability of this model was verified by the comparison of experimentally measured pressure and simulation results for high density polyethylene melt. This comparison shows that there is a good adequacy between experimental data and model predictions. |
doi_str_mv | 10.1179/1743289810Y.0000000032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sage_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671431088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1179_1743289810Y.0000000032</sage_id><sourcerecordid>963863232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-c2a66c90631b51ceb14a49f38f4fa1ada1b90ca622ab06ac095d342e67e6cb8e3</originalsourceid><addsrcrecordid>eNqNkU2PFCEQhonRxM24f8FwMXrpla-m6eNmo6vJGi968ESq-Vgx3TACnXH-vXRm_Di5QlKQ1PO-VVAIPafkitJhfE0HwZkaFSVfrsh5cfYIXWyJbss8bnch-04RSp-iy1LCRIjqieTjcIHWD8m6eQ7xHieP92k-Li5jP6_BtpgOGKLF2ZVgXTQO17A4bEOpOUxrDSniEHE9tFBMdgfsftS82uawls3SB1NDw9aCbVqgYYurX5N9hp54mIu7PJ879Pntm08377q7j7fvb67vOiOUqJ1hIKUZW6t06qlxExUgRs-VFx4oWKDTSAxIxmAiEgwZe8sFc3Jw0kzK8R16efLd5_R9daXqJRTT3gvRtab0KLmSnLX9XyTjvWrkq3-SVA5UcErUhsoTanIqJTuv9zkskI-aEr2NT_81Pv1nfE344lwDioHZZ4gmlN9qJiQZZKuyQ_zEFbh3-ltac2zf-bD79UkVok95gUPKs9UVjnPKv0rxBzx-Agj_vtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671431088</pqid></control><display><type>article</type><title>Modelling of polymer fluid flow and residence time distribution in twin screw extruder using fictitious domain method</title><source>SAGE Publications</source><creator>Sobhani, H. ; Ghoreishy, M. H. R. ; Razavi-Nouri, M. ; Anderson, P. D. ; Meijer, H. H. E.</creator><creatorcontrib>Sobhani, H. ; Ghoreishy, M. H. R. ; Razavi-Nouri, M. ; Anderson, P. D. ; Meijer, H. H. E.</creatorcontrib><description>The flow behaviour of a polymer melt in the conveying region of an intermeshing corotating twin screw extruder was studied using the combination of mixed finite element and fictitious domain method. The model was a combination of the governing equations of continuity and momentum with Carreau rheological model in a three-dimensional Cartesian coordinate system. The equations were solved by the use of a mixed Galerkin finite element technique. The Picard's iterative procedure was used to handle the non-linear nature of the derived equations. The particle tracking technique was used to obtain residence time distribution and analyse distributive mixing in conveying region. The shear rate distribution was investigated as a criterion for dispersive mixing. The applicability of this model was verified by the comparison of experimentally measured pressure and simulation results for high density polyethylene melt. This comparison shows that there is a good adequacy between experimental data and model predictions.</description><identifier>ISSN: 1465-8011</identifier><identifier>EISSN: 1743-2898</identifier><identifier>DOI: 10.1179/1743289810Y.0000000032</identifier><language>eng</language><publisher>London, England: Taylor & Francis</publisher><subject>Applied sciences ; Conveying ; Exact sciences and technology ; Extrusion moulding ; Fictitious domain method ; Finite element method ; Machinery and processing ; Mathematical analysis ; Mathematical models ; Melts ; Moulding ; Plastics ; Polyethylenes ; Polymer industry, paints, wood ; Residence time distribution ; Simulation ; Technology of polymers ; Twin screw extruder ; Twin screw extruders</subject><ispartof>Plastics, rubber & composites, 2011-10, Vol.40 (8), p.387-396</ispartof><rights>Institute of Materials, Minerals and Mining 2011 Published by Maney on behalf of the Institute 2011</rights><rights>Institute of Materials, Minerals and Mining 2011 Published by Maney on behalf of the Institute</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-c2a66c90631b51ceb14a49f38f4fa1ada1b90ca622ab06ac095d342e67e6cb8e3</citedby><cites>FETCH-LOGICAL-c484t-c2a66c90631b51ceb14a49f38f4fa1ada1b90ca622ab06ac095d342e67e6cb8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1179/1743289810Y.0000000032$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1179/1743289810Y.0000000032$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24607614$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sobhani, H.</creatorcontrib><creatorcontrib>Ghoreishy, M. H. R.</creatorcontrib><creatorcontrib>Razavi-Nouri, M.</creatorcontrib><creatorcontrib>Anderson, P. D.</creatorcontrib><creatorcontrib>Meijer, H. H. E.</creatorcontrib><title>Modelling of polymer fluid flow and residence time distribution in twin screw extruder using fictitious domain method</title><title>Plastics, rubber & composites</title><description>The flow behaviour of a polymer melt in the conveying region of an intermeshing corotating twin screw extruder was studied using the combination of mixed finite element and fictitious domain method. The model was a combination of the governing equations of continuity and momentum with Carreau rheological model in a three-dimensional Cartesian coordinate system. The equations were solved by the use of a mixed Galerkin finite element technique. The Picard's iterative procedure was used to handle the non-linear nature of the derived equations. The particle tracking technique was used to obtain residence time distribution and analyse distributive mixing in conveying region. The shear rate distribution was investigated as a criterion for dispersive mixing. The applicability of this model was verified by the comparison of experimentally measured pressure and simulation results for high density polyethylene melt. This comparison shows that there is a good adequacy between experimental data and model predictions.</description><subject>Applied sciences</subject><subject>Conveying</subject><subject>Exact sciences and technology</subject><subject>Extrusion moulding</subject><subject>Fictitious domain method</subject><subject>Finite element method</subject><subject>Machinery and processing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Melts</subject><subject>Moulding</subject><subject>Plastics</subject><subject>Polyethylenes</subject><subject>Polymer industry, paints, wood</subject><subject>Residence time distribution</subject><subject>Simulation</subject><subject>Technology of polymers</subject><subject>Twin screw extruder</subject><subject>Twin screw extruders</subject><issn>1465-8011</issn><issn>1743-2898</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU2PFCEQhonRxM24f8FwMXrpla-m6eNmo6vJGi968ESq-Vgx3TACnXH-vXRm_Di5QlKQ1PO-VVAIPafkitJhfE0HwZkaFSVfrsh5cfYIXWyJbss8bnch-04RSp-iy1LCRIjqieTjcIHWD8m6eQ7xHieP92k-Li5jP6_BtpgOGKLF2ZVgXTQO17A4bEOpOUxrDSniEHE9tFBMdgfsftS82uawls3SB1NDw9aCbVqgYYurX5N9hp54mIu7PJ879Pntm08377q7j7fvb67vOiOUqJ1hIKUZW6t06qlxExUgRs-VFx4oWKDTSAxIxmAiEgwZe8sFc3Jw0kzK8R16efLd5_R9daXqJRTT3gvRtab0KLmSnLX9XyTjvWrkq3-SVA5UcErUhsoTanIqJTuv9zkskI-aEr2NT_81Pv1nfE344lwDioHZZ4gmlN9qJiQZZKuyQ_zEFbh3-ltac2zf-bD79UkVok95gUPKs9UVjnPKv0rxBzx-Agj_vtA</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Sobhani, H.</creator><creator>Ghoreishy, M. H. R.</creator><creator>Razavi-Nouri, M.</creator><creator>Anderson, P. D.</creator><creator>Meijer, H. H. E.</creator><general>Taylor & Francis</general><general>SAGE Publications</general><general>Maney</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111001</creationdate><title>Modelling of polymer fluid flow and residence time distribution in twin screw extruder using fictitious domain method</title><author>Sobhani, H. ; Ghoreishy, M. H. R. ; Razavi-Nouri, M. ; Anderson, P. D. ; Meijer, H. H. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-c2a66c90631b51ceb14a49f38f4fa1ada1b90ca622ab06ac095d342e67e6cb8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Conveying</topic><topic>Exact sciences and technology</topic><topic>Extrusion moulding</topic><topic>Fictitious domain method</topic><topic>Finite element method</topic><topic>Machinery and processing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Melts</topic><topic>Moulding</topic><topic>Plastics</topic><topic>Polyethylenes</topic><topic>Polymer industry, paints, wood</topic><topic>Residence time distribution</topic><topic>Simulation</topic><topic>Technology of polymers</topic><topic>Twin screw extruder</topic><topic>Twin screw extruders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sobhani, H.</creatorcontrib><creatorcontrib>Ghoreishy, M. H. R.</creatorcontrib><creatorcontrib>Razavi-Nouri, M.</creatorcontrib><creatorcontrib>Anderson, P. D.</creatorcontrib><creatorcontrib>Meijer, H. H. E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Plastics, rubber & composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sobhani, H.</au><au>Ghoreishy, M. H. R.</au><au>Razavi-Nouri, M.</au><au>Anderson, P. D.</au><au>Meijer, H. H. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of polymer fluid flow and residence time distribution in twin screw extruder using fictitious domain method</atitle><jtitle>Plastics, rubber & composites</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>40</volume><issue>8</issue><spage>387</spage><epage>396</epage><pages>387-396</pages><issn>1465-8011</issn><eissn>1743-2898</eissn><abstract>The flow behaviour of a polymer melt in the conveying region of an intermeshing corotating twin screw extruder was studied using the combination of mixed finite element and fictitious domain method. The model was a combination of the governing equations of continuity and momentum with Carreau rheological model in a three-dimensional Cartesian coordinate system. The equations were solved by the use of a mixed Galerkin finite element technique. The Picard's iterative procedure was used to handle the non-linear nature of the derived equations. The particle tracking technique was used to obtain residence time distribution and analyse distributive mixing in conveying region. The shear rate distribution was investigated as a criterion for dispersive mixing. The applicability of this model was verified by the comparison of experimentally measured pressure and simulation results for high density polyethylene melt. This comparison shows that there is a good adequacy between experimental data and model predictions.</abstract><cop>London, England</cop><pub>Taylor & Francis</pub><doi>10.1179/1743289810Y.0000000032</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1465-8011 |
ispartof | Plastics, rubber & composites, 2011-10, Vol.40 (8), p.387-396 |
issn | 1465-8011 1743-2898 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671431088 |
source | SAGE Publications |
subjects | Applied sciences Conveying Exact sciences and technology Extrusion moulding Fictitious domain method Finite element method Machinery and processing Mathematical analysis Mathematical models Melts Moulding Plastics Polyethylenes Polymer industry, paints, wood Residence time distribution Simulation Technology of polymers Twin screw extruder Twin screw extruders |
title | Modelling of polymer fluid flow and residence time distribution in twin screw extruder using fictitious domain method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sage_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20polymer%20fluid%20flow%20and%20residence%20time%20distribution%20in%20twin%20screw%20extruder%20using%20fictitious%20domain%20method&rft.jtitle=Plastics,%20rubber%20&%20composites&rft.au=Sobhani,%20H.&rft.date=2011-10-01&rft.volume=40&rft.issue=8&rft.spage=387&rft.epage=396&rft.pages=387-396&rft.issn=1465-8011&rft.eissn=1743-2898&rft_id=info:doi/10.1179/1743289810Y.0000000032&rft_dat=%3Cproquest_sage_%3E963863232%3C/proquest_sage_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671431088&rft_id=info:pmid/&rft_sage_id=10.1179_1743289810Y.0000000032&rfr_iscdi=true |