Modelling of polymer fluid flow and residence time distribution in twin screw extruder using fictitious domain method

The flow behaviour of a polymer melt in the conveying region of an intermeshing corotating twin screw extruder was studied using the combination of mixed finite element and fictitious domain method. The model was a combination of the governing equations of continuity and momentum with Carreau rheolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plastics, rubber & composites rubber & composites, 2011-10, Vol.40 (8), p.387-396
Hauptverfasser: Sobhani, H., Ghoreishy, M. H. R., Razavi-Nouri, M., Anderson, P. D., Meijer, H. H. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 396
container_issue 8
container_start_page 387
container_title Plastics, rubber & composites
container_volume 40
creator Sobhani, H.
Ghoreishy, M. H. R.
Razavi-Nouri, M.
Anderson, P. D.
Meijer, H. H. E.
description The flow behaviour of a polymer melt in the conveying region of an intermeshing corotating twin screw extruder was studied using the combination of mixed finite element and fictitious domain method. The model was a combination of the governing equations of continuity and momentum with Carreau rheological model in a three-dimensional Cartesian coordinate system. The equations were solved by the use of a mixed Galerkin finite element technique. The Picard's iterative procedure was used to handle the non-linear nature of the derived equations. The particle tracking technique was used to obtain residence time distribution and analyse distributive mixing in conveying region. The shear rate distribution was investigated as a criterion for dispersive mixing. The applicability of this model was verified by the comparison of experimentally measured pressure and simulation results for high density polyethylene melt. This comparison shows that there is a good adequacy between experimental data and model predictions.
doi_str_mv 10.1179/1743289810Y.0000000032
format Article
fullrecord <record><control><sourceid>proquest_sage_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671431088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1179_1743289810Y.0000000032</sage_id><sourcerecordid>963863232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-c2a66c90631b51ceb14a49f38f4fa1ada1b90ca622ab06ac095d342e67e6cb8e3</originalsourceid><addsrcrecordid>eNqNkU2PFCEQhonRxM24f8FwMXrpla-m6eNmo6vJGi968ESq-Vgx3TACnXH-vXRm_Di5QlKQ1PO-VVAIPafkitJhfE0HwZkaFSVfrsh5cfYIXWyJbss8bnch-04RSp-iy1LCRIjqieTjcIHWD8m6eQ7xHieP92k-Li5jP6_BtpgOGKLF2ZVgXTQO17A4bEOpOUxrDSniEHE9tFBMdgfsftS82uawls3SB1NDw9aCbVqgYYurX5N9hp54mIu7PJ879Pntm08377q7j7fvb67vOiOUqJ1hIKUZW6t06qlxExUgRs-VFx4oWKDTSAxIxmAiEgwZe8sFc3Jw0kzK8R16efLd5_R9daXqJRTT3gvRtab0KLmSnLX9XyTjvWrkq3-SVA5UcErUhsoTanIqJTuv9zkskI-aEr2NT_81Pv1nfE344lwDioHZZ4gmlN9qJiQZZKuyQ_zEFbh3-ltac2zf-bD79UkVok95gUPKs9UVjnPKv0rxBzx-Agj_vtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671431088</pqid></control><display><type>article</type><title>Modelling of polymer fluid flow and residence time distribution in twin screw extruder using fictitious domain method</title><source>SAGE Publications</source><creator>Sobhani, H. ; Ghoreishy, M. H. R. ; Razavi-Nouri, M. ; Anderson, P. D. ; Meijer, H. H. E.</creator><creatorcontrib>Sobhani, H. ; Ghoreishy, M. H. R. ; Razavi-Nouri, M. ; Anderson, P. D. ; Meijer, H. H. E.</creatorcontrib><description>The flow behaviour of a polymer melt in the conveying region of an intermeshing corotating twin screw extruder was studied using the combination of mixed finite element and fictitious domain method. The model was a combination of the governing equations of continuity and momentum with Carreau rheological model in a three-dimensional Cartesian coordinate system. The equations were solved by the use of a mixed Galerkin finite element technique. The Picard's iterative procedure was used to handle the non-linear nature of the derived equations. The particle tracking technique was used to obtain residence time distribution and analyse distributive mixing in conveying region. The shear rate distribution was investigated as a criterion for dispersive mixing. The applicability of this model was verified by the comparison of experimentally measured pressure and simulation results for high density polyethylene melt. This comparison shows that there is a good adequacy between experimental data and model predictions.</description><identifier>ISSN: 1465-8011</identifier><identifier>EISSN: 1743-2898</identifier><identifier>DOI: 10.1179/1743289810Y.0000000032</identifier><language>eng</language><publisher>London, England: Taylor &amp; Francis</publisher><subject>Applied sciences ; Conveying ; Exact sciences and technology ; Extrusion moulding ; Fictitious domain method ; Finite element method ; Machinery and processing ; Mathematical analysis ; Mathematical models ; Melts ; Moulding ; Plastics ; Polyethylenes ; Polymer industry, paints, wood ; Residence time distribution ; Simulation ; Technology of polymers ; Twin screw extruder ; Twin screw extruders</subject><ispartof>Plastics, rubber &amp; composites, 2011-10, Vol.40 (8), p.387-396</ispartof><rights>Institute of Materials, Minerals and Mining 2011 Published by Maney on behalf of the Institute 2011</rights><rights>Institute of Materials, Minerals and Mining 2011 Published by Maney on behalf of the Institute</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-c2a66c90631b51ceb14a49f38f4fa1ada1b90ca622ab06ac095d342e67e6cb8e3</citedby><cites>FETCH-LOGICAL-c484t-c2a66c90631b51ceb14a49f38f4fa1ada1b90ca622ab06ac095d342e67e6cb8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1179/1743289810Y.0000000032$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1179/1743289810Y.0000000032$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24607614$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sobhani, H.</creatorcontrib><creatorcontrib>Ghoreishy, M. H. R.</creatorcontrib><creatorcontrib>Razavi-Nouri, M.</creatorcontrib><creatorcontrib>Anderson, P. D.</creatorcontrib><creatorcontrib>Meijer, H. H. E.</creatorcontrib><title>Modelling of polymer fluid flow and residence time distribution in twin screw extruder using fictitious domain method</title><title>Plastics, rubber &amp; composites</title><description>The flow behaviour of a polymer melt in the conveying region of an intermeshing corotating twin screw extruder was studied using the combination of mixed finite element and fictitious domain method. The model was a combination of the governing equations of continuity and momentum with Carreau rheological model in a three-dimensional Cartesian coordinate system. The equations were solved by the use of a mixed Galerkin finite element technique. The Picard's iterative procedure was used to handle the non-linear nature of the derived equations. The particle tracking technique was used to obtain residence time distribution and analyse distributive mixing in conveying region. The shear rate distribution was investigated as a criterion for dispersive mixing. The applicability of this model was verified by the comparison of experimentally measured pressure and simulation results for high density polyethylene melt. This comparison shows that there is a good adequacy between experimental data and model predictions.</description><subject>Applied sciences</subject><subject>Conveying</subject><subject>Exact sciences and technology</subject><subject>Extrusion moulding</subject><subject>Fictitious domain method</subject><subject>Finite element method</subject><subject>Machinery and processing</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Melts</subject><subject>Moulding</subject><subject>Plastics</subject><subject>Polyethylenes</subject><subject>Polymer industry, paints, wood</subject><subject>Residence time distribution</subject><subject>Simulation</subject><subject>Technology of polymers</subject><subject>Twin screw extruder</subject><subject>Twin screw extruders</subject><issn>1465-8011</issn><issn>1743-2898</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU2PFCEQhonRxM24f8FwMXrpla-m6eNmo6vJGi968ESq-Vgx3TACnXH-vXRm_Di5QlKQ1PO-VVAIPafkitJhfE0HwZkaFSVfrsh5cfYIXWyJbss8bnch-04RSp-iy1LCRIjqieTjcIHWD8m6eQ7xHieP92k-Li5jP6_BtpgOGKLF2ZVgXTQO17A4bEOpOUxrDSniEHE9tFBMdgfsftS82uawls3SB1NDw9aCbVqgYYurX5N9hp54mIu7PJ879Pntm08377q7j7fvb67vOiOUqJ1hIKUZW6t06qlxExUgRs-VFx4oWKDTSAxIxmAiEgwZe8sFc3Jw0kzK8R16efLd5_R9daXqJRTT3gvRtab0KLmSnLX9XyTjvWrkq3-SVA5UcErUhsoTanIqJTuv9zkskI-aEr2NT_81Pv1nfE344lwDioHZZ4gmlN9qJiQZZKuyQ_zEFbh3-ltac2zf-bD79UkVok95gUPKs9UVjnPKv0rxBzx-Agj_vtA</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Sobhani, H.</creator><creator>Ghoreishy, M. H. R.</creator><creator>Razavi-Nouri, M.</creator><creator>Anderson, P. D.</creator><creator>Meijer, H. H. E.</creator><general>Taylor &amp; Francis</general><general>SAGE Publications</general><general>Maney</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111001</creationdate><title>Modelling of polymer fluid flow and residence time distribution in twin screw extruder using fictitious domain method</title><author>Sobhani, H. ; Ghoreishy, M. H. R. ; Razavi-Nouri, M. ; Anderson, P. D. ; Meijer, H. H. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-c2a66c90631b51ceb14a49f38f4fa1ada1b90ca622ab06ac095d342e67e6cb8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Conveying</topic><topic>Exact sciences and technology</topic><topic>Extrusion moulding</topic><topic>Fictitious domain method</topic><topic>Finite element method</topic><topic>Machinery and processing</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Melts</topic><topic>Moulding</topic><topic>Plastics</topic><topic>Polyethylenes</topic><topic>Polymer industry, paints, wood</topic><topic>Residence time distribution</topic><topic>Simulation</topic><topic>Technology of polymers</topic><topic>Twin screw extruder</topic><topic>Twin screw extruders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sobhani, H.</creatorcontrib><creatorcontrib>Ghoreishy, M. H. R.</creatorcontrib><creatorcontrib>Razavi-Nouri, M.</creatorcontrib><creatorcontrib>Anderson, P. D.</creatorcontrib><creatorcontrib>Meijer, H. H. E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Plastics, rubber &amp; composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sobhani, H.</au><au>Ghoreishy, M. H. R.</au><au>Razavi-Nouri, M.</au><au>Anderson, P. D.</au><au>Meijer, H. H. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of polymer fluid flow and residence time distribution in twin screw extruder using fictitious domain method</atitle><jtitle>Plastics, rubber &amp; composites</jtitle><date>2011-10-01</date><risdate>2011</risdate><volume>40</volume><issue>8</issue><spage>387</spage><epage>396</epage><pages>387-396</pages><issn>1465-8011</issn><eissn>1743-2898</eissn><abstract>The flow behaviour of a polymer melt in the conveying region of an intermeshing corotating twin screw extruder was studied using the combination of mixed finite element and fictitious domain method. The model was a combination of the governing equations of continuity and momentum with Carreau rheological model in a three-dimensional Cartesian coordinate system. The equations were solved by the use of a mixed Galerkin finite element technique. The Picard's iterative procedure was used to handle the non-linear nature of the derived equations. The particle tracking technique was used to obtain residence time distribution and analyse distributive mixing in conveying region. The shear rate distribution was investigated as a criterion for dispersive mixing. The applicability of this model was verified by the comparison of experimentally measured pressure and simulation results for high density polyethylene melt. This comparison shows that there is a good adequacy between experimental data and model predictions.</abstract><cop>London, England</cop><pub>Taylor &amp; Francis</pub><doi>10.1179/1743289810Y.0000000032</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1465-8011
ispartof Plastics, rubber & composites, 2011-10, Vol.40 (8), p.387-396
issn 1465-8011
1743-2898
language eng
recordid cdi_proquest_miscellaneous_1671431088
source SAGE Publications
subjects Applied sciences
Conveying
Exact sciences and technology
Extrusion moulding
Fictitious domain method
Finite element method
Machinery and processing
Mathematical analysis
Mathematical models
Melts
Moulding
Plastics
Polyethylenes
Polymer industry, paints, wood
Residence time distribution
Simulation
Technology of polymers
Twin screw extruder
Twin screw extruders
title Modelling of polymer fluid flow and residence time distribution in twin screw extruder using fictitious domain method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sage_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20polymer%20fluid%20flow%20and%20residence%20time%20distribution%20in%20twin%20screw%20extruder%20using%20fictitious%20domain%20method&rft.jtitle=Plastics,%20rubber%20&%20composites&rft.au=Sobhani,%20H.&rft.date=2011-10-01&rft.volume=40&rft.issue=8&rft.spage=387&rft.epage=396&rft.pages=387-396&rft.issn=1465-8011&rft.eissn=1743-2898&rft_id=info:doi/10.1179/1743289810Y.0000000032&rft_dat=%3Cproquest_sage_%3E963863232%3C/proquest_sage_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671431088&rft_id=info:pmid/&rft_sage_id=10.1179_1743289810Y.0000000032&rfr_iscdi=true