Design and Manufacturing Main Linac Superconducting Quadrupole for ILC at Fermilab
The design and manufacturing of the first model of an International Linear Collider (ILC) Main Linac superconducting quadrupole is in progress at Fermilab. The quadrupole has a 78 mm aperture, a 36 T integrated gradient, and a cold mass length of 700 mm. A superferric magnet configuration with iron...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2008-06, Vol.18 (2), p.155-158 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 158 |
---|---|
container_issue | 2 |
container_start_page | 155 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 18 |
creator | Kashikhin, V.S. Andreev, N. Lamm, M.J. Lopes, M.L. Tompkins, J.C. Zlobin, A.V. |
description | The design and manufacturing of the first model of an International Linear Collider (ILC) Main Linac superconducting quadrupole is in progress at Fermilab. The quadrupole has a 78 mm aperture, a 36 T integrated gradient, and a cold mass length of 700 mm. A superferric magnet configuration with iron poles and four racetrack coils was chosen based on magnet performance, cost, and reliability considerations. Each coil is wound using enamel insulated, 0.5 mm diameter, NbTi superconductor. The quadrupole package also includes shell type dipole steering coils. The results of the quadrupole design, including magnetic and mechanical analyses, are presented. Specific issues related to the quadrupole magnetic center stability, superconductor magnetization and mechanical stability are discussed and analyzed. The magnet quench protection system, current leads, and mounting the quadrupole inside ILC Main Linac cryomodule will also be briefly discussed. |
doi_str_mv | 10.1109/TASC.2008.921945 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671430628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4509459</ieee_id><sourcerecordid>1671430628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-9f19950d73314a2b7328a1334e03a39861ee606dc2471aaed05c5cc3c9adfc113</originalsourceid><addsrcrecordid>eNp9kctLxEAMxoso-LwLXoqgeOmazKPtHGV9wor4Og9xOpWR7nSd6Rz8721Z8eDBUxLyy5eEL8sOEWaIoM5fLp7nMwZQzxRDJeRGtoNS1gWTKDfHHCQWNWN8O9uN8QMARS3kTvZ0aaN79zn5Jr8nn1oyQwrOv4-V8_nCeTL5c1rZYHrfJDNMrcdETUirvrN524f8bjHPacivbVi6jt72s62WumgPfuJe9np99TK_LRYPN3fzi0VhBCuHQrWolISm4hwFsbeKs5qQc2GBE1d1idaWUDaGiQqJbAPSSGO4UdS0BpHvZadr3VXoP5ONg166aGzXkbd9ipqXnJcA1Qie_QtiWaHgULJ6RI__oB99Cn58QytkTHHBpsWwhkzoYwy21avglhS-NIKezNCTGXoyQ6_NGEdOfnQpGuraQN64-DvHQNTTuSN3tOactfa3LSSMIop_A5dqkFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912293421</pqid></control><display><type>article</type><title>Design and Manufacturing Main Linac Superconducting Quadrupole for ILC at Fermilab</title><source>IEEE Electronic Library (IEL)</source><creator>Kashikhin, V.S. ; Andreev, N. ; Lamm, M.J. ; Lopes, M.L. ; Tompkins, J.C. ; Zlobin, A.V.</creator><creatorcontrib>Kashikhin, V.S. ; Andreev, N. ; Lamm, M.J. ; Lopes, M.L. ; Tompkins, J.C. ; Zlobin, A.V.</creatorcontrib><description>The design and manufacturing of the first model of an International Linear Collider (ILC) Main Linac superconducting quadrupole is in progress at Fermilab. The quadrupole has a 78 mm aperture, a 36 T integrated gradient, and a cold mass length of 700 mm. A superferric magnet configuration with iron poles and four racetrack coils was chosen based on magnet performance, cost, and reliability considerations. Each coil is wound using enamel insulated, 0.5 mm diameter, NbTi superconductor. The quadrupole package also includes shell type dipole steering coils. The results of the quadrupole design, including magnetic and mechanical analyses, are presented. Specific issues related to the quadrupole magnetic center stability, superconductor magnetization and mechanical stability are discussed and analyzed. The magnet quench protection system, current leads, and mounting the quadrupole inside ILC Main Linac cryomodule will also be briefly discussed.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2008.921945</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Apertures ; Applied sciences ; Coils ; Collider ; Connection and protection apparatus ; Costs ; Design engineering ; Design. Technologies. Operation analysis. Testing ; Electric connection. Cables. Wiring ; Electrical engineering. Electrical power engineering ; Electromagnets ; Electronics ; Exact sciences and technology ; Integrated circuits ; Iron ; Linear accelerators ; Linear particle accelerator ; Magnetic analysis ; magnetic design ; Magnetization ; main Linac ; manufacturing ; Protection systems ; Quadrupoles ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Stability ; Stability analysis ; Superconducting coils ; Superconducting magnets ; superconducting quadrupole ; Superconductivity ; Superconductors ; Various equipment and components ; Virtual manufacturing ; Wounds</subject><ispartof>IEEE transactions on applied superconductivity, 2008-06, Vol.18 (2), p.155-158</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-9f19950d73314a2b7328a1334e03a39861ee606dc2471aaed05c5cc3c9adfc113</citedby><cites>FETCH-LOGICAL-c426t-9f19950d73314a2b7328a1334e03a39861ee606dc2471aaed05c5cc3c9adfc113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4509459$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4509459$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20483633$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kashikhin, V.S.</creatorcontrib><creatorcontrib>Andreev, N.</creatorcontrib><creatorcontrib>Lamm, M.J.</creatorcontrib><creatorcontrib>Lopes, M.L.</creatorcontrib><creatorcontrib>Tompkins, J.C.</creatorcontrib><creatorcontrib>Zlobin, A.V.</creatorcontrib><title>Design and Manufacturing Main Linac Superconducting Quadrupole for ILC at Fermilab</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The design and manufacturing of the first model of an International Linear Collider (ILC) Main Linac superconducting quadrupole is in progress at Fermilab. The quadrupole has a 78 mm aperture, a 36 T integrated gradient, and a cold mass length of 700 mm. A superferric magnet configuration with iron poles and four racetrack coils was chosen based on magnet performance, cost, and reliability considerations. Each coil is wound using enamel insulated, 0.5 mm diameter, NbTi superconductor. The quadrupole package also includes shell type dipole steering coils. The results of the quadrupole design, including magnetic and mechanical analyses, are presented. Specific issues related to the quadrupole magnetic center stability, superconductor magnetization and mechanical stability are discussed and analyzed. The magnet quench protection system, current leads, and mounting the quadrupole inside ILC Main Linac cryomodule will also be briefly discussed.</description><subject>Apertures</subject><subject>Applied sciences</subject><subject>Coils</subject><subject>Collider</subject><subject>Connection and protection apparatus</subject><subject>Costs</subject><subject>Design engineering</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electric connection. Cables. Wiring</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Iron</subject><subject>Linear accelerators</subject><subject>Linear particle accelerator</subject><subject>Magnetic analysis</subject><subject>magnetic design</subject><subject>Magnetization</subject><subject>main Linac</subject><subject>manufacturing</subject><subject>Protection systems</subject><subject>Quadrupoles</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Superconducting coils</subject><subject>Superconducting magnets</subject><subject>superconducting quadrupole</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Various equipment and components</subject><subject>Virtual manufacturing</subject><subject>Wounds</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kctLxEAMxoso-LwLXoqgeOmazKPtHGV9wor4Og9xOpWR7nSd6Rz8721Z8eDBUxLyy5eEL8sOEWaIoM5fLp7nMwZQzxRDJeRGtoNS1gWTKDfHHCQWNWN8O9uN8QMARS3kTvZ0aaN79zn5Jr8nn1oyQwrOv4-V8_nCeTL5c1rZYHrfJDNMrcdETUirvrN524f8bjHPacivbVi6jt72s62WumgPfuJe9np99TK_LRYPN3fzi0VhBCuHQrWolISm4hwFsbeKs5qQc2GBE1d1idaWUDaGiQqJbAPSSGO4UdS0BpHvZadr3VXoP5ONg166aGzXkbd9ipqXnJcA1Qie_QtiWaHgULJ6RI__oB99Cn58QytkTHHBpsWwhkzoYwy21avglhS-NIKezNCTGXoyQ6_NGEdOfnQpGuraQN64-DvHQNTTuSN3tOactfa3LSSMIop_A5dqkFw</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Kashikhin, V.S.</creator><creator>Andreev, N.</creator><creator>Lamm, M.J.</creator><creator>Lopes, M.L.</creator><creator>Tompkins, J.C.</creator><creator>Zlobin, A.V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080601</creationdate><title>Design and Manufacturing Main Linac Superconducting Quadrupole for ILC at Fermilab</title><author>Kashikhin, V.S. ; Andreev, N. ; Lamm, M.J. ; Lopes, M.L. ; Tompkins, J.C. ; Zlobin, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-9f19950d73314a2b7328a1334e03a39861ee606dc2471aaed05c5cc3c9adfc113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Apertures</topic><topic>Applied sciences</topic><topic>Coils</topic><topic>Collider</topic><topic>Connection and protection apparatus</topic><topic>Costs</topic><topic>Design engineering</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electric connection. Cables. Wiring</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Iron</topic><topic>Linear accelerators</topic><topic>Linear particle accelerator</topic><topic>Magnetic analysis</topic><topic>magnetic design</topic><topic>Magnetization</topic><topic>main Linac</topic><topic>manufacturing</topic><topic>Protection systems</topic><topic>Quadrupoles</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Superconducting coils</topic><topic>Superconducting magnets</topic><topic>superconducting quadrupole</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Various equipment and components</topic><topic>Virtual manufacturing</topic><topic>Wounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashikhin, V.S.</creatorcontrib><creatorcontrib>Andreev, N.</creatorcontrib><creatorcontrib>Lamm, M.J.</creatorcontrib><creatorcontrib>Lopes, M.L.</creatorcontrib><creatorcontrib>Tompkins, J.C.</creatorcontrib><creatorcontrib>Zlobin, A.V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kashikhin, V.S.</au><au>Andreev, N.</au><au>Lamm, M.J.</au><au>Lopes, M.L.</au><au>Tompkins, J.C.</au><au>Zlobin, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Manufacturing Main Linac Superconducting Quadrupole for ILC at Fermilab</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>18</volume><issue>2</issue><spage>155</spage><epage>158</epage><pages>155-158</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The design and manufacturing of the first model of an International Linear Collider (ILC) Main Linac superconducting quadrupole is in progress at Fermilab. The quadrupole has a 78 mm aperture, a 36 T integrated gradient, and a cold mass length of 700 mm. A superferric magnet configuration with iron poles and four racetrack coils was chosen based on magnet performance, cost, and reliability considerations. Each coil is wound using enamel insulated, 0.5 mm diameter, NbTi superconductor. The quadrupole package also includes shell type dipole steering coils. The results of the quadrupole design, including magnetic and mechanical analyses, are presented. Specific issues related to the quadrupole magnetic center stability, superconductor magnetization and mechanical stability are discussed and analyzed. The magnet quench protection system, current leads, and mounting the quadrupole inside ILC Main Linac cryomodule will also be briefly discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2008.921945</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2008-06, Vol.18 (2), p.155-158 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671430628 |
source | IEEE Electronic Library (IEL) |
subjects | Apertures Applied sciences Coils Collider Connection and protection apparatus Costs Design engineering Design. Technologies. Operation analysis. Testing Electric connection. Cables. Wiring Electrical engineering. Electrical power engineering Electromagnets Electronics Exact sciences and technology Integrated circuits Iron Linear accelerators Linear particle accelerator Magnetic analysis magnetic design Magnetization main Linac manufacturing Protection systems Quadrupoles Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Stability Stability analysis Superconducting coils Superconducting magnets superconducting quadrupole Superconductivity Superconductors Various equipment and components Virtual manufacturing Wounds |
title | Design and Manufacturing Main Linac Superconducting Quadrupole for ILC at Fermilab |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Manufacturing%20Main%20Linac%20Superconducting%20Quadrupole%20for%20ILC%20at%20Fermilab&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Kashikhin,%20V.S.&rft.date=2008-06-01&rft.volume=18&rft.issue=2&rft.spage=155&rft.epage=158&rft.pages=155-158&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2008.921945&rft_dat=%3Cproquest_RIE%3E1671430628%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912293421&rft_id=info:pmid/&rft_ieee_id=4509459&rfr_iscdi=true |