Design and Manufacturing Main Linac Superconducting Quadrupole for ILC at Fermilab

The design and manufacturing of the first model of an International Linear Collider (ILC) Main Linac superconducting quadrupole is in progress at Fermilab. The quadrupole has a 78 mm aperture, a 36 T integrated gradient, and a cold mass length of 700 mm. A superferric magnet configuration with iron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2008-06, Vol.18 (2), p.155-158
Hauptverfasser: Kashikhin, V.S., Andreev, N., Lamm, M.J., Lopes, M.L., Tompkins, J.C., Zlobin, A.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue 2
container_start_page 155
container_title IEEE transactions on applied superconductivity
container_volume 18
creator Kashikhin, V.S.
Andreev, N.
Lamm, M.J.
Lopes, M.L.
Tompkins, J.C.
Zlobin, A.V.
description The design and manufacturing of the first model of an International Linear Collider (ILC) Main Linac superconducting quadrupole is in progress at Fermilab. The quadrupole has a 78 mm aperture, a 36 T integrated gradient, and a cold mass length of 700 mm. A superferric magnet configuration with iron poles and four racetrack coils was chosen based on magnet performance, cost, and reliability considerations. Each coil is wound using enamel insulated, 0.5 mm diameter, NbTi superconductor. The quadrupole package also includes shell type dipole steering coils. The results of the quadrupole design, including magnetic and mechanical analyses, are presented. Specific issues related to the quadrupole magnetic center stability, superconductor magnetization and mechanical stability are discussed and analyzed. The magnet quench protection system, current leads, and mounting the quadrupole inside ILC Main Linac cryomodule will also be briefly discussed.
doi_str_mv 10.1109/TASC.2008.921945
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671430628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4509459</ieee_id><sourcerecordid>1671430628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-9f19950d73314a2b7328a1334e03a39861ee606dc2471aaed05c5cc3c9adfc113</originalsourceid><addsrcrecordid>eNp9kctLxEAMxoso-LwLXoqgeOmazKPtHGV9wor4Og9xOpWR7nSd6Rz8721Z8eDBUxLyy5eEL8sOEWaIoM5fLp7nMwZQzxRDJeRGtoNS1gWTKDfHHCQWNWN8O9uN8QMARS3kTvZ0aaN79zn5Jr8nn1oyQwrOv4-V8_nCeTL5c1rZYHrfJDNMrcdETUirvrN524f8bjHPacivbVi6jt72s62WumgPfuJe9np99TK_LRYPN3fzi0VhBCuHQrWolISm4hwFsbeKs5qQc2GBE1d1idaWUDaGiQqJbAPSSGO4UdS0BpHvZadr3VXoP5ONg166aGzXkbd9ipqXnJcA1Qie_QtiWaHgULJ6RI__oB99Cn58QytkTHHBpsWwhkzoYwy21avglhS-NIKezNCTGXoyQ6_NGEdOfnQpGuraQN64-DvHQNTTuSN3tOactfa3LSSMIop_A5dqkFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912293421</pqid></control><display><type>article</type><title>Design and Manufacturing Main Linac Superconducting Quadrupole for ILC at Fermilab</title><source>IEEE Electronic Library (IEL)</source><creator>Kashikhin, V.S. ; Andreev, N. ; Lamm, M.J. ; Lopes, M.L. ; Tompkins, J.C. ; Zlobin, A.V.</creator><creatorcontrib>Kashikhin, V.S. ; Andreev, N. ; Lamm, M.J. ; Lopes, M.L. ; Tompkins, J.C. ; Zlobin, A.V.</creatorcontrib><description>The design and manufacturing of the first model of an International Linear Collider (ILC) Main Linac superconducting quadrupole is in progress at Fermilab. The quadrupole has a 78 mm aperture, a 36 T integrated gradient, and a cold mass length of 700 mm. A superferric magnet configuration with iron poles and four racetrack coils was chosen based on magnet performance, cost, and reliability considerations. Each coil is wound using enamel insulated, 0.5 mm diameter, NbTi superconductor. The quadrupole package also includes shell type dipole steering coils. The results of the quadrupole design, including magnetic and mechanical analyses, are presented. Specific issues related to the quadrupole magnetic center stability, superconductor magnetization and mechanical stability are discussed and analyzed. The magnet quench protection system, current leads, and mounting the quadrupole inside ILC Main Linac cryomodule will also be briefly discussed.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2008.921945</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Apertures ; Applied sciences ; Coils ; Collider ; Connection and protection apparatus ; Costs ; Design engineering ; Design. Technologies. Operation analysis. Testing ; Electric connection. Cables. Wiring ; Electrical engineering. Electrical power engineering ; Electromagnets ; Electronics ; Exact sciences and technology ; Integrated circuits ; Iron ; Linear accelerators ; Linear particle accelerator ; Magnetic analysis ; magnetic design ; Magnetization ; main Linac ; manufacturing ; Protection systems ; Quadrupoles ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Stability ; Stability analysis ; Superconducting coils ; Superconducting magnets ; superconducting quadrupole ; Superconductivity ; Superconductors ; Various equipment and components ; Virtual manufacturing ; Wounds</subject><ispartof>IEEE transactions on applied superconductivity, 2008-06, Vol.18 (2), p.155-158</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-9f19950d73314a2b7328a1334e03a39861ee606dc2471aaed05c5cc3c9adfc113</citedby><cites>FETCH-LOGICAL-c426t-9f19950d73314a2b7328a1334e03a39861ee606dc2471aaed05c5cc3c9adfc113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4509459$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,792,23909,23910,25118,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4509459$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20483633$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kashikhin, V.S.</creatorcontrib><creatorcontrib>Andreev, N.</creatorcontrib><creatorcontrib>Lamm, M.J.</creatorcontrib><creatorcontrib>Lopes, M.L.</creatorcontrib><creatorcontrib>Tompkins, J.C.</creatorcontrib><creatorcontrib>Zlobin, A.V.</creatorcontrib><title>Design and Manufacturing Main Linac Superconducting Quadrupole for ILC at Fermilab</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The design and manufacturing of the first model of an International Linear Collider (ILC) Main Linac superconducting quadrupole is in progress at Fermilab. The quadrupole has a 78 mm aperture, a 36 T integrated gradient, and a cold mass length of 700 mm. A superferric magnet configuration with iron poles and four racetrack coils was chosen based on magnet performance, cost, and reliability considerations. Each coil is wound using enamel insulated, 0.5 mm diameter, NbTi superconductor. The quadrupole package also includes shell type dipole steering coils. The results of the quadrupole design, including magnetic and mechanical analyses, are presented. Specific issues related to the quadrupole magnetic center stability, superconductor magnetization and mechanical stability are discussed and analyzed. The magnet quench protection system, current leads, and mounting the quadrupole inside ILC Main Linac cryomodule will also be briefly discussed.</description><subject>Apertures</subject><subject>Applied sciences</subject><subject>Coils</subject><subject>Collider</subject><subject>Connection and protection apparatus</subject><subject>Costs</subject><subject>Design engineering</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electric connection. Cables. Wiring</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electromagnets</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Iron</subject><subject>Linear accelerators</subject><subject>Linear particle accelerator</subject><subject>Magnetic analysis</subject><subject>magnetic design</subject><subject>Magnetization</subject><subject>main Linac</subject><subject>manufacturing</subject><subject>Protection systems</subject><subject>Quadrupoles</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Superconducting coils</subject><subject>Superconducting magnets</subject><subject>superconducting quadrupole</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Various equipment and components</subject><subject>Virtual manufacturing</subject><subject>Wounds</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kctLxEAMxoso-LwLXoqgeOmazKPtHGV9wor4Og9xOpWR7nSd6Rz8721Z8eDBUxLyy5eEL8sOEWaIoM5fLp7nMwZQzxRDJeRGtoNS1gWTKDfHHCQWNWN8O9uN8QMARS3kTvZ0aaN79zn5Jr8nn1oyQwrOv4-V8_nCeTL5c1rZYHrfJDNMrcdETUirvrN524f8bjHPacivbVi6jt72s62WumgPfuJe9np99TK_LRYPN3fzi0VhBCuHQrWolISm4hwFsbeKs5qQc2GBE1d1idaWUDaGiQqJbAPSSGO4UdS0BpHvZadr3VXoP5ONg166aGzXkbd9ipqXnJcA1Qie_QtiWaHgULJ6RI__oB99Cn58QytkTHHBpsWwhkzoYwy21avglhS-NIKezNCTGXoyQ6_NGEdOfnQpGuraQN64-DvHQNTTuSN3tOactfa3LSSMIop_A5dqkFw</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Kashikhin, V.S.</creator><creator>Andreev, N.</creator><creator>Lamm, M.J.</creator><creator>Lopes, M.L.</creator><creator>Tompkins, J.C.</creator><creator>Zlobin, A.V.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080601</creationdate><title>Design and Manufacturing Main Linac Superconducting Quadrupole for ILC at Fermilab</title><author>Kashikhin, V.S. ; Andreev, N. ; Lamm, M.J. ; Lopes, M.L. ; Tompkins, J.C. ; Zlobin, A.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-9f19950d73314a2b7328a1334e03a39861ee606dc2471aaed05c5cc3c9adfc113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Apertures</topic><topic>Applied sciences</topic><topic>Coils</topic><topic>Collider</topic><topic>Connection and protection apparatus</topic><topic>Costs</topic><topic>Design engineering</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electric connection. Cables. Wiring</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electromagnets</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Iron</topic><topic>Linear accelerators</topic><topic>Linear particle accelerator</topic><topic>Magnetic analysis</topic><topic>magnetic design</topic><topic>Magnetization</topic><topic>main Linac</topic><topic>manufacturing</topic><topic>Protection systems</topic><topic>Quadrupoles</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Superconducting coils</topic><topic>Superconducting magnets</topic><topic>superconducting quadrupole</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Various equipment and components</topic><topic>Virtual manufacturing</topic><topic>Wounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashikhin, V.S.</creatorcontrib><creatorcontrib>Andreev, N.</creatorcontrib><creatorcontrib>Lamm, M.J.</creatorcontrib><creatorcontrib>Lopes, M.L.</creatorcontrib><creatorcontrib>Tompkins, J.C.</creatorcontrib><creatorcontrib>Zlobin, A.V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kashikhin, V.S.</au><au>Andreev, N.</au><au>Lamm, M.J.</au><au>Lopes, M.L.</au><au>Tompkins, J.C.</au><au>Zlobin, A.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Manufacturing Main Linac Superconducting Quadrupole for ILC at Fermilab</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>18</volume><issue>2</issue><spage>155</spage><epage>158</epage><pages>155-158</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The design and manufacturing of the first model of an International Linear Collider (ILC) Main Linac superconducting quadrupole is in progress at Fermilab. The quadrupole has a 78 mm aperture, a 36 T integrated gradient, and a cold mass length of 700 mm. A superferric magnet configuration with iron poles and four racetrack coils was chosen based on magnet performance, cost, and reliability considerations. Each coil is wound using enamel insulated, 0.5 mm diameter, NbTi superconductor. The quadrupole package also includes shell type dipole steering coils. The results of the quadrupole design, including magnetic and mechanical analyses, are presented. Specific issues related to the quadrupole magnetic center stability, superconductor magnetization and mechanical stability are discussed and analyzed. The magnet quench protection system, current leads, and mounting the quadrupole inside ILC Main Linac cryomodule will also be briefly discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2008.921945</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2008-06, Vol.18 (2), p.155-158
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_miscellaneous_1671430628
source IEEE Electronic Library (IEL)
subjects Apertures
Applied sciences
Coils
Collider
Connection and protection apparatus
Costs
Design engineering
Design. Technologies. Operation analysis. Testing
Electric connection. Cables. Wiring
Electrical engineering. Electrical power engineering
Electromagnets
Electronics
Exact sciences and technology
Integrated circuits
Iron
Linear accelerators
Linear particle accelerator
Magnetic analysis
magnetic design
Magnetization
main Linac
manufacturing
Protection systems
Quadrupoles
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Stability
Stability analysis
Superconducting coils
Superconducting magnets
superconducting quadrupole
Superconductivity
Superconductors
Various equipment and components
Virtual manufacturing
Wounds
title Design and Manufacturing Main Linac Superconducting Quadrupole for ILC at Fermilab
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A27%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Manufacturing%20Main%20Linac%20Superconducting%20Quadrupole%20for%20ILC%20at%20Fermilab&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Kashikhin,%20V.S.&rft.date=2008-06-01&rft.volume=18&rft.issue=2&rft.spage=155&rft.epage=158&rft.pages=155-158&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2008.921945&rft_dat=%3Cproquest_RIE%3E1671430628%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912293421&rft_id=info:pmid/&rft_ieee_id=4509459&rfr_iscdi=true