Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic

Emerging applications for nanomagnets demand increasingly precise control of magnetic anisotropy. To date, many of the available mechanisms for controlling anisotropy have placed restrictions on a nanomagnet’s material, size, or thickness, particularly when more than one easy axis is required. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2013-05, Vol.111 (2), p.413-421
Hauptverfasser: Lambson, Brian, Gu, Zheng, Monroe, Morgan, Dhuey, Scott, Scholl, Andreas, Bokor, Jeffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 421
container_issue 2
container_start_page 413
container_title Applied physics. A, Materials science & processing
container_volume 111
creator Lambson, Brian
Gu, Zheng
Monroe, Morgan
Dhuey, Scott
Scholl, Andreas
Bokor, Jeffrey
description Emerging applications for nanomagnets demand increasingly precise control of magnetic anisotropy. To date, many of the available mechanisms for controlling anisotropy have placed restrictions on a nanomagnet’s material, size, or thickness, particularly when more than one easy axis is required. This gives rise to practical and fundamental challenges to designing nanomagnet-based devices. Here, we review an experimental investigation of configurational anisotropy in concave nanomagnets, motivated by the finding that, in concave geometries, small adjustments to a nanomagnet’s shape result in large, predictable changes in its anisotropy profile. We first employ magnetooptical techniques to characterize nanomagnets with concave shapes. We then design and test a nanomagnetic logic architecture using concave nanomagnets that exhibits improved reliability relative to existing designs.
doi_str_mv 10.1007/s00339-013-7654-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671430405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671430405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-77d345d8abd837dd91e314b727483e1e3afd88bfcbb4e2e7bcd2e0ca1232d74f3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7jlyCWQrzUtNzTxJU3iAucoTdwqU5eUpJvUf09gHDjhgy1b72vZD0LXjN4yStVdplSIhlAmiKpWkswnaMGk4IRWgp6iBW2kIrVoqnN0kfOWlpCcL1C7jsGaA-BgQtyZPsCU77EPB8iT783kY8Cxwyb4HKcUxxmPJUOaPOQyddiM4-DtjzDjKf7Z4y0eYu_tJTrrzJDh6rcu0cfT4_v6hWzenl_XDxtiBWcTUcoJuXK1aV0tlHMNA8Fkq7iStYDSmM7VddvZtpXAQbXWcaDWMC64U7ITS3Rz3Fsu_NyX-_XOZwvDYALEfdasUoUIlXRVpOwotSnmnKDTY_I7k2bNqP7mqY88deGpv3nquXj40ZOLNvSQ9DbuUygf_WP6AsPDfAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671430405</pqid></control><display><type>article</type><title>Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic</title><source>SpringerLINK Journals</source><creator>Lambson, Brian ; Gu, Zheng ; Monroe, Morgan ; Dhuey, Scott ; Scholl, Andreas ; Bokor, Jeffrey</creator><creatorcontrib>Lambson, Brian ; Gu, Zheng ; Monroe, Morgan ; Dhuey, Scott ; Scholl, Andreas ; Bokor, Jeffrey</creatorcontrib><description>Emerging applications for nanomagnets demand increasingly precise control of magnetic anisotropy. To date, many of the available mechanisms for controlling anisotropy have placed restrictions on a nanomagnet’s material, size, or thickness, particularly when more than one easy axis is required. This gives rise to practical and fundamental challenges to designing nanomagnet-based devices. Here, we review an experimental investigation of configurational anisotropy in concave nanomagnets, motivated by the finding that, in concave geometries, small adjustments to a nanomagnet’s shape result in large, predictable changes in its anisotropy profile. We first employ magnetooptical techniques to characterize nanomagnets with concave shapes. We then design and test a nanomagnetic logic architecture using concave nanomagnets that exhibits improved reliability relative to existing designs.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-013-7654-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Anisotropy ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Devices ; Invited Paper ; Logic ; Machines ; Magnetic anisotropy ; Manufacturing ; Marketing ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2013-05, Vol.111 (2), p.413-421</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-77d345d8abd837dd91e314b727483e1e3afd88bfcbb4e2e7bcd2e0ca1232d74f3</citedby><cites>FETCH-LOGICAL-c321t-77d345d8abd837dd91e314b727483e1e3afd88bfcbb4e2e7bcd2e0ca1232d74f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-013-7654-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-013-7654-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lambson, Brian</creatorcontrib><creatorcontrib>Gu, Zheng</creatorcontrib><creatorcontrib>Monroe, Morgan</creatorcontrib><creatorcontrib>Dhuey, Scott</creatorcontrib><creatorcontrib>Scholl, Andreas</creatorcontrib><creatorcontrib>Bokor, Jeffrey</creatorcontrib><title>Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Emerging applications for nanomagnets demand increasingly precise control of magnetic anisotropy. To date, many of the available mechanisms for controlling anisotropy have placed restrictions on a nanomagnet’s material, size, or thickness, particularly when more than one easy axis is required. This gives rise to practical and fundamental challenges to designing nanomagnet-based devices. Here, we review an experimental investigation of configurational anisotropy in concave nanomagnets, motivated by the finding that, in concave geometries, small adjustments to a nanomagnet’s shape result in large, predictable changes in its anisotropy profile. We first employ magnetooptical techniques to characterize nanomagnets with concave shapes. We then design and test a nanomagnetic logic architecture using concave nanomagnets that exhibits improved reliability relative to existing designs.</description><subject>Anisotropy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Devices</subject><subject>Invited Paper</subject><subject>Logic</subject><subject>Machines</subject><subject>Magnetic anisotropy</subject><subject>Manufacturing</subject><subject>Marketing</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7jlyCWQrzUtNzTxJU3iAucoTdwqU5eUpJvUf09gHDjhgy1b72vZD0LXjN4yStVdplSIhlAmiKpWkswnaMGk4IRWgp6iBW2kIrVoqnN0kfOWlpCcL1C7jsGaA-BgQtyZPsCU77EPB8iT783kY8Cxwyb4HKcUxxmPJUOaPOQyddiM4-DtjzDjKf7Z4y0eYu_tJTrrzJDh6rcu0cfT4_v6hWzenl_XDxtiBWcTUcoJuXK1aV0tlHMNA8Fkq7iStYDSmM7VddvZtpXAQbXWcaDWMC64U7ITS3Rz3Fsu_NyX-_XOZwvDYALEfdasUoUIlXRVpOwotSnmnKDTY_I7k2bNqP7mqY88deGpv3nquXj40ZOLNvSQ9DbuUygf_WP6AsPDfAw</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Lambson, Brian</creator><creator>Gu, Zheng</creator><creator>Monroe, Morgan</creator><creator>Dhuey, Scott</creator><creator>Scholl, Andreas</creator><creator>Bokor, Jeffrey</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic</title><author>Lambson, Brian ; Gu, Zheng ; Monroe, Morgan ; Dhuey, Scott ; Scholl, Andreas ; Bokor, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-77d345d8abd837dd91e314b727483e1e3afd88bfcbb4e2e7bcd2e0ca1232d74f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anisotropy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Devices</topic><topic>Invited Paper</topic><topic>Logic</topic><topic>Machines</topic><topic>Magnetic anisotropy</topic><topic>Manufacturing</topic><topic>Marketing</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambson, Brian</creatorcontrib><creatorcontrib>Gu, Zheng</creatorcontrib><creatorcontrib>Monroe, Morgan</creatorcontrib><creatorcontrib>Dhuey, Scott</creatorcontrib><creatorcontrib>Scholl, Andreas</creatorcontrib><creatorcontrib>Bokor, Jeffrey</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambson, Brian</au><au>Gu, Zheng</au><au>Monroe, Morgan</au><au>Dhuey, Scott</au><au>Scholl, Andreas</au><au>Bokor, Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>111</volume><issue>2</issue><spage>413</spage><epage>421</epage><pages>413-421</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Emerging applications for nanomagnets demand increasingly precise control of magnetic anisotropy. To date, many of the available mechanisms for controlling anisotropy have placed restrictions on a nanomagnet’s material, size, or thickness, particularly when more than one easy axis is required. This gives rise to practical and fundamental challenges to designing nanomagnet-based devices. Here, we review an experimental investigation of configurational anisotropy in concave nanomagnets, motivated by the finding that, in concave geometries, small adjustments to a nanomagnet’s shape result in large, predictable changes in its anisotropy profile. We first employ magnetooptical techniques to characterize nanomagnets with concave shapes. We then design and test a nanomagnetic logic architecture using concave nanomagnets that exhibits improved reliability relative to existing designs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00339-013-7654-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2013-05, Vol.111 (2), p.413-421
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1671430405
source SpringerLINK Journals
subjects Anisotropy
Characterization and Evaluation of Materials
Condensed Matter Physics
Devices
Invited Paper
Logic
Machines
Magnetic anisotropy
Manufacturing
Marketing
Nanocomposites
Nanomaterials
Nanostructure
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Surfaces and Interfaces
Thin Films
title Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concave%20nanomagnets:%20investigation%20of%20anisotropy%20properties%20and%20applications%20to%20nanomagnetic%20logic&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Lambson,%20Brian&rft.date=2013-05-01&rft.volume=111&rft.issue=2&rft.spage=413&rft.epage=421&rft.pages=413-421&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-013-7654-y&rft_dat=%3Cproquest_cross%3E1671430405%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671430405&rft_id=info:pmid/&rfr_iscdi=true