Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic
Emerging applications for nanomagnets demand increasingly precise control of magnetic anisotropy. To date, many of the available mechanisms for controlling anisotropy have placed restrictions on a nanomagnet’s material, size, or thickness, particularly when more than one easy axis is required. This...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2013-05, Vol.111 (2), p.413-421 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 421 |
---|---|
container_issue | 2 |
container_start_page | 413 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 111 |
creator | Lambson, Brian Gu, Zheng Monroe, Morgan Dhuey, Scott Scholl, Andreas Bokor, Jeffrey |
description | Emerging applications for nanomagnets demand increasingly precise control of magnetic anisotropy. To date, many of the available mechanisms for controlling anisotropy have placed restrictions on a nanomagnet’s material, size, or thickness, particularly when more than one easy axis is required. This gives rise to practical and fundamental challenges to designing nanomagnet-based devices. Here, we review an experimental investigation of configurational anisotropy in concave nanomagnets, motivated by the finding that, in concave geometries, small adjustments to a nanomagnet’s shape result in large, predictable changes in its anisotropy profile. We first employ magnetooptical techniques to characterize nanomagnets with concave shapes. We then design and test a nanomagnetic logic architecture using concave nanomagnets that exhibits improved reliability relative to existing designs. |
doi_str_mv | 10.1007/s00339-013-7654-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671430405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671430405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-77d345d8abd837dd91e314b727483e1e3afd88bfcbb4e2e7bcd2e0ca1232d74f3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7jlyCWQrzUtNzTxJU3iAucoTdwqU5eUpJvUf09gHDjhgy1b72vZD0LXjN4yStVdplSIhlAmiKpWkswnaMGk4IRWgp6iBW2kIrVoqnN0kfOWlpCcL1C7jsGaA-BgQtyZPsCU77EPB8iT783kY8Cxwyb4HKcUxxmPJUOaPOQyddiM4-DtjzDjKf7Z4y0eYu_tJTrrzJDh6rcu0cfT4_v6hWzenl_XDxtiBWcTUcoJuXK1aV0tlHMNA8Fkq7iStYDSmM7VddvZtpXAQbXWcaDWMC64U7ITS3Rz3Fsu_NyX-_XOZwvDYALEfdasUoUIlXRVpOwotSnmnKDTY_I7k2bNqP7mqY88deGpv3nquXj40ZOLNvSQ9DbuUygf_WP6AsPDfAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671430405</pqid></control><display><type>article</type><title>Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic</title><source>SpringerLINK Journals</source><creator>Lambson, Brian ; Gu, Zheng ; Monroe, Morgan ; Dhuey, Scott ; Scholl, Andreas ; Bokor, Jeffrey</creator><creatorcontrib>Lambson, Brian ; Gu, Zheng ; Monroe, Morgan ; Dhuey, Scott ; Scholl, Andreas ; Bokor, Jeffrey</creatorcontrib><description>Emerging applications for nanomagnets demand increasingly precise control of magnetic anisotropy. To date, many of the available mechanisms for controlling anisotropy have placed restrictions on a nanomagnet’s material, size, or thickness, particularly when more than one easy axis is required. This gives rise to practical and fundamental challenges to designing nanomagnet-based devices. Here, we review an experimental investigation of configurational anisotropy in concave nanomagnets, motivated by the finding that, in concave geometries, small adjustments to a nanomagnet’s shape result in large, predictable changes in its anisotropy profile. We first employ magnetooptical techniques to characterize nanomagnets with concave shapes. We then design and test a nanomagnetic logic architecture using concave nanomagnets that exhibits improved reliability relative to existing designs.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-013-7654-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Anisotropy ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Devices ; Invited Paper ; Logic ; Machines ; Magnetic anisotropy ; Manufacturing ; Marketing ; Nanocomposites ; Nanomaterials ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2013-05, Vol.111 (2), p.413-421</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-77d345d8abd837dd91e314b727483e1e3afd88bfcbb4e2e7bcd2e0ca1232d74f3</citedby><cites>FETCH-LOGICAL-c321t-77d345d8abd837dd91e314b727483e1e3afd88bfcbb4e2e7bcd2e0ca1232d74f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-013-7654-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-013-7654-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lambson, Brian</creatorcontrib><creatorcontrib>Gu, Zheng</creatorcontrib><creatorcontrib>Monroe, Morgan</creatorcontrib><creatorcontrib>Dhuey, Scott</creatorcontrib><creatorcontrib>Scholl, Andreas</creatorcontrib><creatorcontrib>Bokor, Jeffrey</creatorcontrib><title>Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Emerging applications for nanomagnets demand increasingly precise control of magnetic anisotropy. To date, many of the available mechanisms for controlling anisotropy have placed restrictions on a nanomagnet’s material, size, or thickness, particularly when more than one easy axis is required. This gives rise to practical and fundamental challenges to designing nanomagnet-based devices. Here, we review an experimental investigation of configurational anisotropy in concave nanomagnets, motivated by the finding that, in concave geometries, small adjustments to a nanomagnet’s shape result in large, predictable changes in its anisotropy profile. We first employ magnetooptical techniques to characterize nanomagnets with concave shapes. We then design and test a nanomagnetic logic architecture using concave nanomagnets that exhibits improved reliability relative to existing designs.</description><subject>Anisotropy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Devices</subject><subject>Invited Paper</subject><subject>Logic</subject><subject>Machines</subject><subject>Magnetic anisotropy</subject><subject>Manufacturing</subject><subject>Marketing</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7jlyCWQrzUtNzTxJU3iAucoTdwqU5eUpJvUf09gHDjhgy1b72vZD0LXjN4yStVdplSIhlAmiKpWkswnaMGk4IRWgp6iBW2kIrVoqnN0kfOWlpCcL1C7jsGaA-BgQtyZPsCU77EPB8iT783kY8Cxwyb4HKcUxxmPJUOaPOQyddiM4-DtjzDjKf7Z4y0eYu_tJTrrzJDh6rcu0cfT4_v6hWzenl_XDxtiBWcTUcoJuXK1aV0tlHMNA8Fkq7iStYDSmM7VddvZtpXAQbXWcaDWMC64U7ITS3Rz3Fsu_NyX-_XOZwvDYALEfdasUoUIlXRVpOwotSnmnKDTY_I7k2bNqP7mqY88deGpv3nquXj40ZOLNvSQ9DbuUygf_WP6AsPDfAw</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Lambson, Brian</creator><creator>Gu, Zheng</creator><creator>Monroe, Morgan</creator><creator>Dhuey, Scott</creator><creator>Scholl, Andreas</creator><creator>Bokor, Jeffrey</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic</title><author>Lambson, Brian ; Gu, Zheng ; Monroe, Morgan ; Dhuey, Scott ; Scholl, Andreas ; Bokor, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-77d345d8abd837dd91e314b727483e1e3afd88bfcbb4e2e7bcd2e0ca1232d74f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anisotropy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Devices</topic><topic>Invited Paper</topic><topic>Logic</topic><topic>Machines</topic><topic>Magnetic anisotropy</topic><topic>Manufacturing</topic><topic>Marketing</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambson, Brian</creatorcontrib><creatorcontrib>Gu, Zheng</creatorcontrib><creatorcontrib>Monroe, Morgan</creatorcontrib><creatorcontrib>Dhuey, Scott</creatorcontrib><creatorcontrib>Scholl, Andreas</creatorcontrib><creatorcontrib>Bokor, Jeffrey</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambson, Brian</au><au>Gu, Zheng</au><au>Monroe, Morgan</au><au>Dhuey, Scott</au><au>Scholl, Andreas</au><au>Bokor, Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2013-05-01</date><risdate>2013</risdate><volume>111</volume><issue>2</issue><spage>413</spage><epage>421</epage><pages>413-421</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Emerging applications for nanomagnets demand increasingly precise control of magnetic anisotropy. To date, many of the available mechanisms for controlling anisotropy have placed restrictions on a nanomagnet’s material, size, or thickness, particularly when more than one easy axis is required. This gives rise to practical and fundamental challenges to designing nanomagnet-based devices. Here, we review an experimental investigation of configurational anisotropy in concave nanomagnets, motivated by the finding that, in concave geometries, small adjustments to a nanomagnet’s shape result in large, predictable changes in its anisotropy profile. We first employ magnetooptical techniques to characterize nanomagnets with concave shapes. We then design and test a nanomagnetic logic architecture using concave nanomagnets that exhibits improved reliability relative to existing designs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00339-013-7654-y</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2013-05, Vol.111 (2), p.413-421 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671430405 |
source | SpringerLINK Journals |
subjects | Anisotropy Characterization and Evaluation of Materials Condensed Matter Physics Devices Invited Paper Logic Machines Magnetic anisotropy Manufacturing Marketing Nanocomposites Nanomaterials Nanostructure Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Processes Surfaces and Interfaces Thin Films |
title | Concave nanomagnets: investigation of anisotropy properties and applications to nanomagnetic logic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concave%20nanomagnets:%20investigation%20of%20anisotropy%20properties%20and%20applications%20to%20nanomagnetic%20logic&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Lambson,%20Brian&rft.date=2013-05-01&rft.volume=111&rft.issue=2&rft.spage=413&rft.epage=421&rft.pages=413-421&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-013-7654-y&rft_dat=%3Cproquest_cross%3E1671430405%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671430405&rft_id=info:pmid/&rfr_iscdi=true |