Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers

The Rayleigh-Taylor instability in two-dimensional incompressible fluids at arbitrary Atwood numbers is studied by expanding the perturbation velocity potential to third order. The second and third harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics letters 2010-02, Vol.27 (2), p.180-183
1. Verfasser: 王立锋 叶文华 李英骏
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 2
container_start_page 180
container_title Chinese physics letters
container_volume 27
creator 王立锋 叶文华 李英骏
description The Rayleigh-Taylor instability in two-dimensional incompressible fluids at arbitrary Atwood numbers is studied by expanding the perturbation velocity potential to third order. The second and third harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The mode coupling coefficients are dependent on the Atwood numbers. Our simulations support the weakly nonlinear results. We find that the ratio of the nonlinear saturation amplitude ηs and the perturbation wavelength λ is dependent on the Atwood number AT and the relation is ηs/λ=(1/π)[√2/5/√(1+3AT2 )].
doi_str_mv 10.1088/0256-307X/27/2/025203
format Article
fullrecord <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671426910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>33011966</cqvip_id><sourcerecordid>1671426910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-234b4e74bc68b6db2fa849a4e935e0c323a874d70f511f28636c9ec6fa36e27b3</originalsourceid><addsrcrecordid>eNqNkV9LwzAUxYMoOKcfQSg--VKXf03axzGdDoaCTPAtJmm6RdNmS1rGvr0tGz77dO-Fc-49_C4Atwg-IJjnE4gzlhLIPyeYT_AwYkjOwAhxilKSUXgORn-aS3AV4zeECOUIjcDXau_TR1ubJlrfSJe8y4Mzdr1JV33jQ7JoYiuVdbY9JLbpR-3rbTAxWuVMMnedLWMi22QalG2DDIdk2u69L5PXrlYmxGtwUUkXzc2pjsHH_Gk1e0mXb8-L2XSZ6j5hm2JCFTWcKs1yxUqFK5nTQlJTkMxATTCROaclh1WGUIVzRpgujGaVJMxgrsgY3B_3boPfdSa2orZRG-dkY3wXBWIcUcwKBHtpdpTq4GMMphLbYOs-ukBQDETFQEsMtATmAosj0d4Hjz7rt_-23J1ObXyz3tlmLZTUP5V1RhDSP6FgjPwCwleD5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671426910</pqid></control><display><type>article</type><title>Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers</title><source>Institute of Physics Journals</source><creator>王立锋 叶文华 李英骏</creator><creatorcontrib>王立锋 叶文华 李英骏</creatorcontrib><description>The Rayleigh-Taylor instability in two-dimensional incompressible fluids at arbitrary Atwood numbers is studied by expanding the perturbation velocity potential to third order. The second and third harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The mode coupling coefficients are dependent on the Atwood numbers. Our simulations support the weakly nonlinear results. We find that the ratio of the nonlinear saturation amplitude ηs and the perturbation wavelength λ is dependent on the Atwood number AT and the relation is ηs/λ=(1/π)[√2/5/√(1+3AT2 )].</description><identifier>ISSN: 0256-307X</identifier><identifier>EISSN: 1741-3540</identifier><identifier>DOI: 10.1088/0256-307X/27/2/025203</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Harmonic generations ; Incompressible fluids ; Instability ; Modulation ; Nonlinearity ; Perturbation methods ; Rayleigh ; Stability ; Taylor ; Two dimensional ; 不可压缩流体 ; 不稳定性 ; 模式耦合系数 ; 非线性校正 ; 非线性饱和</subject><ispartof>Chinese physics letters, 2010-02, Vol.27 (2), p.180-183</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-234b4e74bc68b6db2fa849a4e935e0c323a874d70f511f28636c9ec6fa36e27b3</citedby><cites>FETCH-LOGICAL-c354t-234b4e74bc68b6db2fa849a4e935e0c323a874d70f511f28636c9ec6fa36e27b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84212X/84212X.jpg</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0256-307X/27/2/025203/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids></links><search><creatorcontrib>王立锋 叶文华 李英骏</creatorcontrib><title>Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers</title><title>Chinese physics letters</title><addtitle>Chinese Physics Letters</addtitle><description>The Rayleigh-Taylor instability in two-dimensional incompressible fluids at arbitrary Atwood numbers is studied by expanding the perturbation velocity potential to third order. The second and third harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The mode coupling coefficients are dependent on the Atwood numbers. Our simulations support the weakly nonlinear results. We find that the ratio of the nonlinear saturation amplitude ηs and the perturbation wavelength λ is dependent on the Atwood number AT and the relation is ηs/λ=(1/π)[√2/5/√(1+3AT2 )].</description><subject>Harmonic generations</subject><subject>Incompressible fluids</subject><subject>Instability</subject><subject>Modulation</subject><subject>Nonlinearity</subject><subject>Perturbation methods</subject><subject>Rayleigh</subject><subject>Stability</subject><subject>Taylor</subject><subject>Two dimensional</subject><subject>不可压缩流体</subject><subject>不稳定性</subject><subject>模式耦合系数</subject><subject>非线性校正</subject><subject>非线性饱和</subject><issn>0256-307X</issn><issn>1741-3540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkV9LwzAUxYMoOKcfQSg--VKXf03axzGdDoaCTPAtJmm6RdNmS1rGvr0tGz77dO-Fc-49_C4Atwg-IJjnE4gzlhLIPyeYT_AwYkjOwAhxilKSUXgORn-aS3AV4zeECOUIjcDXau_TR1ubJlrfSJe8y4Mzdr1JV33jQ7JoYiuVdbY9JLbpR-3rbTAxWuVMMnedLWMi22QalG2DDIdk2u69L5PXrlYmxGtwUUkXzc2pjsHH_Gk1e0mXb8-L2XSZ6j5hm2JCFTWcKs1yxUqFK5nTQlJTkMxATTCROaclh1WGUIVzRpgujGaVJMxgrsgY3B_3boPfdSa2orZRG-dkY3wXBWIcUcwKBHtpdpTq4GMMphLbYOs-ukBQDETFQEsMtATmAosj0d4Hjz7rt_-23J1ObXyz3tlmLZTUP5V1RhDSP6FgjPwCwleD5A</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>王立锋 叶文华 李英骏</creator><general>IOP Publishing</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100201</creationdate><title>Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers</title><author>王立锋 叶文华 李英骏</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-234b4e74bc68b6db2fa849a4e935e0c323a874d70f511f28636c9ec6fa36e27b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Harmonic generations</topic><topic>Incompressible fluids</topic><topic>Instability</topic><topic>Modulation</topic><topic>Nonlinearity</topic><topic>Perturbation methods</topic><topic>Rayleigh</topic><topic>Stability</topic><topic>Taylor</topic><topic>Two dimensional</topic><topic>不可压缩流体</topic><topic>不稳定性</topic><topic>模式耦合系数</topic><topic>非线性校正</topic><topic>非线性饱和</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王立锋 叶文华 李英骏</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王立锋 叶文华 李英骏</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers</atitle><jtitle>Chinese physics letters</jtitle><addtitle>Chinese Physics Letters</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>27</volume><issue>2</issue><spage>180</spage><epage>183</epage><pages>180-183</pages><issn>0256-307X</issn><eissn>1741-3540</eissn><abstract>The Rayleigh-Taylor instability in two-dimensional incompressible fluids at arbitrary Atwood numbers is studied by expanding the perturbation velocity potential to third order. The second and third harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The mode coupling coefficients are dependent on the Atwood numbers. Our simulations support the weakly nonlinear results. We find that the ratio of the nonlinear saturation amplitude ηs and the perturbation wavelength λ is dependent on the Atwood number AT and the relation is ηs/λ=(1/π)[√2/5/√(1+3AT2 )].</abstract><pub>IOP Publishing</pub><doi>10.1088/0256-307X/27/2/025203</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0256-307X
ispartof Chinese physics letters, 2010-02, Vol.27 (2), p.180-183
issn 0256-307X
1741-3540
language eng
recordid cdi_proquest_miscellaneous_1671426910
source Institute of Physics Journals
subjects Harmonic generations
Incompressible fluids
Instability
Modulation
Nonlinearity
Perturbation methods
Rayleigh
Stability
Taylor
Two dimensional
不可压缩流体
不稳定性
模式耦合系数
非线性校正
非线性饱和
title Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Rayleigh-Taylor%20Instability%20in%20Incompressible%20Fluids%20at%20Arbitrary%20Atwood%20Numbers&rft.jtitle=Chinese%20physics%20letters&rft.au=%E7%8E%8B%E7%AB%8B%E9%94%8B%20%E5%8F%B6%E6%96%87%E5%8D%8E%20%E6%9D%8E%E8%8B%B1%E9%AA%8F&rft.date=2010-02-01&rft.volume=27&rft.issue=2&rft.spage=180&rft.epage=183&rft.pages=180-183&rft.issn=0256-307X&rft.eissn=1741-3540&rft_id=info:doi/10.1088/0256-307X/27/2/025203&rft_dat=%3Cproquest_iop_p%3E1671426910%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671426910&rft_id=info:pmid/&rft_cqvip_id=33011966&rfr_iscdi=true