Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers
The Rayleigh-Taylor instability in two-dimensional incompressible fluids at arbitrary Atwood numbers is studied by expanding the perturbation velocity potential to third order. The second and third harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correct...
Gespeichert in:
Veröffentlicht in: | Chinese physics letters 2010-02, Vol.27 (2), p.180-183 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | 2 |
container_start_page | 180 |
container_title | Chinese physics letters |
container_volume | 27 |
creator | 王立锋 叶文华 李英骏 |
description | The Rayleigh-Taylor instability in two-dimensional incompressible fluids at arbitrary Atwood numbers is studied by expanding the perturbation velocity potential to third order. The second and third harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The mode coupling coefficients are dependent on the Atwood numbers. Our simulations support the weakly nonlinear results. We find that the ratio of the nonlinear saturation amplitude ηs and the perturbation wavelength λ is dependent on the Atwood number AT and the relation is ηs/λ=(1/π)[√2/5/√(1+3AT2 )]. |
doi_str_mv | 10.1088/0256-307X/27/2/025203 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671426910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>33011966</cqvip_id><sourcerecordid>1671426910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-234b4e74bc68b6db2fa849a4e935e0c323a874d70f511f28636c9ec6fa36e27b3</originalsourceid><addsrcrecordid>eNqNkV9LwzAUxYMoOKcfQSg--VKXf03axzGdDoaCTPAtJmm6RdNmS1rGvr0tGz77dO-Fc-49_C4Atwg-IJjnE4gzlhLIPyeYT_AwYkjOwAhxilKSUXgORn-aS3AV4zeECOUIjcDXau_TR1ubJlrfSJe8y4Mzdr1JV33jQ7JoYiuVdbY9JLbpR-3rbTAxWuVMMnedLWMi22QalG2DDIdk2u69L5PXrlYmxGtwUUkXzc2pjsHH_Gk1e0mXb8-L2XSZ6j5hm2JCFTWcKs1yxUqFK5nTQlJTkMxATTCROaclh1WGUIVzRpgujGaVJMxgrsgY3B_3boPfdSa2orZRG-dkY3wXBWIcUcwKBHtpdpTq4GMMphLbYOs-ukBQDETFQEsMtATmAosj0d4Hjz7rt_-23J1ObXyz3tlmLZTUP5V1RhDSP6FgjPwCwleD5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671426910</pqid></control><display><type>article</type><title>Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers</title><source>Institute of Physics Journals</source><creator>王立锋 叶文华 李英骏</creator><creatorcontrib>王立锋 叶文华 李英骏</creatorcontrib><description>The Rayleigh-Taylor instability in two-dimensional incompressible fluids at arbitrary Atwood numbers is studied by expanding the perturbation velocity potential to third order. The second and third harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The mode coupling coefficients are dependent on the Atwood numbers. Our simulations support the weakly nonlinear results. We find that the ratio of the nonlinear saturation amplitude ηs and the perturbation wavelength λ is dependent on the Atwood number AT and the relation is ηs/λ=(1/π)[√2/5/√(1+3AT2 )].</description><identifier>ISSN: 0256-307X</identifier><identifier>EISSN: 1741-3540</identifier><identifier>DOI: 10.1088/0256-307X/27/2/025203</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Harmonic generations ; Incompressible fluids ; Instability ; Modulation ; Nonlinearity ; Perturbation methods ; Rayleigh ; Stability ; Taylor ; Two dimensional ; 不可压缩流体 ; 不稳定性 ; 模式耦合系数 ; 非线性校正 ; 非线性饱和</subject><ispartof>Chinese physics letters, 2010-02, Vol.27 (2), p.180-183</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-234b4e74bc68b6db2fa849a4e935e0c323a874d70f511f28636c9ec6fa36e27b3</citedby><cites>FETCH-LOGICAL-c354t-234b4e74bc68b6db2fa849a4e935e0c323a874d70f511f28636c9ec6fa36e27b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84212X/84212X.jpg</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0256-307X/27/2/025203/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53830,53910</link.rule.ids></links><search><creatorcontrib>王立锋 叶文华 李英骏</creatorcontrib><title>Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers</title><title>Chinese physics letters</title><addtitle>Chinese Physics Letters</addtitle><description>The Rayleigh-Taylor instability in two-dimensional incompressible fluids at arbitrary Atwood numbers is studied by expanding the perturbation velocity potential to third order. The second and third harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The mode coupling coefficients are dependent on the Atwood numbers. Our simulations support the weakly nonlinear results. We find that the ratio of the nonlinear saturation amplitude ηs and the perturbation wavelength λ is dependent on the Atwood number AT and the relation is ηs/λ=(1/π)[√2/5/√(1+3AT2 )].</description><subject>Harmonic generations</subject><subject>Incompressible fluids</subject><subject>Instability</subject><subject>Modulation</subject><subject>Nonlinearity</subject><subject>Perturbation methods</subject><subject>Rayleigh</subject><subject>Stability</subject><subject>Taylor</subject><subject>Two dimensional</subject><subject>不可压缩流体</subject><subject>不稳定性</subject><subject>模式耦合系数</subject><subject>非线性校正</subject><subject>非线性饱和</subject><issn>0256-307X</issn><issn>1741-3540</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkV9LwzAUxYMoOKcfQSg--VKXf03axzGdDoaCTPAtJmm6RdNmS1rGvr0tGz77dO-Fc-49_C4Atwg-IJjnE4gzlhLIPyeYT_AwYkjOwAhxilKSUXgORn-aS3AV4zeECOUIjcDXau_TR1ubJlrfSJe8y4Mzdr1JV33jQ7JoYiuVdbY9JLbpR-3rbTAxWuVMMnedLWMi22QalG2DDIdk2u69L5PXrlYmxGtwUUkXzc2pjsHH_Gk1e0mXb8-L2XSZ6j5hm2JCFTWcKs1yxUqFK5nTQlJTkMxATTCROaclh1WGUIVzRpgujGaVJMxgrsgY3B_3boPfdSa2orZRG-dkY3wXBWIcUcwKBHtpdpTq4GMMphLbYOs-ukBQDETFQEsMtATmAosj0d4Hjz7rt_-23J1ObXyz3tlmLZTUP5V1RhDSP6FgjPwCwleD5A</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>王立锋 叶文华 李英骏</creator><general>IOP Publishing</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100201</creationdate><title>Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers</title><author>王立锋 叶文华 李英骏</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-234b4e74bc68b6db2fa849a4e935e0c323a874d70f511f28636c9ec6fa36e27b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Harmonic generations</topic><topic>Incompressible fluids</topic><topic>Instability</topic><topic>Modulation</topic><topic>Nonlinearity</topic><topic>Perturbation methods</topic><topic>Rayleigh</topic><topic>Stability</topic><topic>Taylor</topic><topic>Two dimensional</topic><topic>不可压缩流体</topic><topic>不稳定性</topic><topic>模式耦合系数</topic><topic>非线性校正</topic><topic>非线性饱和</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>王立锋 叶文华 李英骏</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>王立锋 叶文华 李英骏</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers</atitle><jtitle>Chinese physics letters</jtitle><addtitle>Chinese Physics Letters</addtitle><date>2010-02-01</date><risdate>2010</risdate><volume>27</volume><issue>2</issue><spage>180</spage><epage>183</epage><pages>180-183</pages><issn>0256-307X</issn><eissn>1741-3540</eissn><abstract>The Rayleigh-Taylor instability in two-dimensional incompressible fluids at arbitrary Atwood numbers is studied by expanding the perturbation velocity potential to third order. The second and third harmonic generation effects of single-mode perturbation are analyzed, as well as the nonlinear correction to the exponential growth of the fundamental modulation. The mode coupling coefficients are dependent on the Atwood numbers. Our simulations support the weakly nonlinear results. We find that the ratio of the nonlinear saturation amplitude ηs and the perturbation wavelength λ is dependent on the Atwood number AT and the relation is ηs/λ=(1/π)[√2/5/√(1+3AT2 )].</abstract><pub>IOP Publishing</pub><doi>10.1088/0256-307X/27/2/025203</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-307X |
ispartof | Chinese physics letters, 2010-02, Vol.27 (2), p.180-183 |
issn | 0256-307X 1741-3540 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671426910 |
source | Institute of Physics Journals |
subjects | Harmonic generations Incompressible fluids Instability Modulation Nonlinearity Perturbation methods Rayleigh Stability Taylor Two dimensional 不可压缩流体 不稳定性 模式耦合系数 非线性校正 非线性饱和 |
title | Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20Rayleigh-Taylor%20Instability%20in%20Incompressible%20Fluids%20at%20Arbitrary%20Atwood%20Numbers&rft.jtitle=Chinese%20physics%20letters&rft.au=%E7%8E%8B%E7%AB%8B%E9%94%8B%20%E5%8F%B6%E6%96%87%E5%8D%8E%20%E6%9D%8E%E8%8B%B1%E9%AA%8F&rft.date=2010-02-01&rft.volume=27&rft.issue=2&rft.spage=180&rft.epage=183&rft.pages=180-183&rft.issn=0256-307X&rft.eissn=1741-3540&rft_id=info:doi/10.1088/0256-307X/27/2/025203&rft_dat=%3Cproquest_iop_p%3E1671426910%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671426910&rft_id=info:pmid/&rft_cqvip_id=33011966&rfr_iscdi=true |