Information-Theoretic Feature Selection in Microarray Data Using Variable Complementarity

The paper presents an original filter approach for effective feature selection in microarray data characterized by a large number of input variables and a few samples. The approach is based on the use of a new information-theoretic selection, the double input symmetrical relevance (DISR), which reli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2008-06, Vol.2 (3), p.261-274
Hauptverfasser: Meyer, P.E., Schretter, C., Bontempi, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue 3
container_start_page 261
container_title IEEE journal of selected topics in signal processing
container_volume 2
creator Meyer, P.E.
Schretter, C.
Bontempi, G.
description The paper presents an original filter approach for effective feature selection in microarray data characterized by a large number of input variables and a few samples. The approach is based on the use of a new information-theoretic selection, the double input symmetrical relevance (DISR), which relies on a measure of variable complementarity. This measure evaluates the additional information that a set of variables provides about the output with respect to the sum of each single variable contribution. We show that a variable selection approach based on DISR can be formulated as a quadratic optimization problem: the dispersion sum problem (DSP). To solve this problem, we use a strategy based on backward elimination and sequential replacement (BESR). The combination of BESR and the DISR criterion is compared in theoretical and experimental terms to recently proposed information-theoretic criteria. Experimental results on a synthetic dataset as well as on a set of eleven microarray classification tasks show that the proposed technique is competitive with existing filter selection methods.
doi_str_mv 10.1109/JSTSP.2008.923858
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671419166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4550559</ieee_id><sourcerecordid>875091346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-826ddcb4d9b5d133a47f4c28d4d4c253b792c4a8e8d6a6b1fb2114d64a3855733</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEEqXwAxCXiANwyeLxt49ooaWoCKTdInGynGSyuErixU6Q9t_jNIgDh3Kakf28Htl-iuI5kA0AMW8_7fa7rxtKiN4YyrTQD4ozMBwqwjV_uPSMVlwI9rh4ktItIUJJ4GfF96uxC3Fwkw9jtf-BIeLkm_IC3TRHLHfYY7PslX4sP_smBhejO5Xv3eTKm-THQ_nNRe_qHsttGI49DjhOeWU6PS0eda5P-OxPPS9uLj7stx-r6y-XV9t311UjqJkqTWXbNjVvTS1aYMxx1fGG6pa3uQhWK0Mb7jTqVjpZQ1dTAN5K7vIthWLsvGDrub3HA9oQa29_URucX_u5P1jX2BotpVJbkMwAzanXa-oYw88Z02QHnxrsezdimJPVShADjMtMvrqXZJwbKZT-L0iJlEornsE394IgFXAwIJfhL_9Bb8Mcx_yeVkuqQStYBsMK5e9JKWJnj9EPLp4sELvYYe_ssIsddrUjZ16sGY-If_ksCBHCsN8lXLT-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862818718</pqid></control><display><type>article</type><title>Information-Theoretic Feature Selection in Microarray Data Using Variable Complementarity</title><source>IEEE Electronic Library (IEL)</source><creator>Meyer, P.E. ; Schretter, C. ; Bontempi, G.</creator><creatorcontrib>Meyer, P.E. ; Schretter, C. ; Bontempi, G.</creatorcontrib><description>The paper presents an original filter approach for effective feature selection in microarray data characterized by a large number of input variables and a few samples. The approach is based on the use of a new information-theoretic selection, the double input symmetrical relevance (DISR), which relies on a measure of variable complementarity. This measure evaluates the additional information that a set of variables provides about the output with respect to the sum of each single variable contribution. We show that a variable selection approach based on DISR can be formulated as a quadratic optimization problem: the dispersion sum problem (DSP). To solve this problem, we use a strategy based on backward elimination and sequential replacement (BESR). The combination of BESR and the DISR criterion is compared in theoretical and experimental terms to recently proposed information-theoretic criteria. Experimental results on a synthetic dataset as well as on a set of eleven microarray classification tasks show that the proposed technique is competitive with existing filter selection methods.</description><identifier>ISSN: 1932-4553</identifier><identifier>ISSN: 1941-0484</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2008.923858</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cancer ; Classification ; Criteria ; Data analysis ; Digital signal processing ; Dispersions ; Engineering, computing &amp; technology ; Information filtering ; Information filters ; Information-theoretic feature selection ; Ingénierie, informatique &amp; technologie ; Input variables ; Machine learning ; Medical treatment ; Mutual information ; Optimization ; Predictive models ; Signal processing ; Stochastic processes ; Strategy ; Studies ; Tasks ; variable complementarity ; variable interaction</subject><ispartof>IEEE journal of selected topics in signal processing, 2008-06, Vol.2 (3), p.261-274</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-826ddcb4d9b5d133a47f4c28d4d4c253b792c4a8e8d6a6b1fb2114d64a3855733</citedby><cites>FETCH-LOGICAL-c529t-826ddcb4d9b5d133a47f4c28d4d4c253b792c4a8e8d6a6b1fb2114d64a3855733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4550559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4550559$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meyer, P.E.</creatorcontrib><creatorcontrib>Schretter, C.</creatorcontrib><creatorcontrib>Bontempi, G.</creatorcontrib><title>Information-Theoretic Feature Selection in Microarray Data Using Variable Complementarity</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>The paper presents an original filter approach for effective feature selection in microarray data characterized by a large number of input variables and a few samples. The approach is based on the use of a new information-theoretic selection, the double input symmetrical relevance (DISR), which relies on a measure of variable complementarity. This measure evaluates the additional information that a set of variables provides about the output with respect to the sum of each single variable contribution. We show that a variable selection approach based on DISR can be formulated as a quadratic optimization problem: the dispersion sum problem (DSP). To solve this problem, we use a strategy based on backward elimination and sequential replacement (BESR). The combination of BESR and the DISR criterion is compared in theoretical and experimental terms to recently proposed information-theoretic criteria. Experimental results on a synthetic dataset as well as on a set of eleven microarray classification tasks show that the proposed technique is competitive with existing filter selection methods.</description><subject>Cancer</subject><subject>Classification</subject><subject>Criteria</subject><subject>Data analysis</subject><subject>Digital signal processing</subject><subject>Dispersions</subject><subject>Engineering, computing &amp; technology</subject><subject>Information filtering</subject><subject>Information filters</subject><subject>Information-theoretic feature selection</subject><subject>Ingénierie, informatique &amp; technologie</subject><subject>Input variables</subject><subject>Machine learning</subject><subject>Medical treatment</subject><subject>Mutual information</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>Signal processing</subject><subject>Stochastic processes</subject><subject>Strategy</subject><subject>Studies</subject><subject>Tasks</subject><subject>variable complementarity</subject><subject>variable interaction</subject><issn>1932-4553</issn><issn>1941-0484</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkk1v1DAQhiMEEqXwAxCXiANwyeLxt49ooaWoCKTdInGynGSyuErixU6Q9t_jNIgDh3Kakf28Htl-iuI5kA0AMW8_7fa7rxtKiN4YyrTQD4ozMBwqwjV_uPSMVlwI9rh4ktItIUJJ4GfF96uxC3Fwkw9jtf-BIeLkm_IC3TRHLHfYY7PslX4sP_smBhejO5Xv3eTKm-THQ_nNRe_qHsttGI49DjhOeWU6PS0eda5P-OxPPS9uLj7stx-r6y-XV9t311UjqJkqTWXbNjVvTS1aYMxx1fGG6pa3uQhWK0Mb7jTqVjpZQ1dTAN5K7vIthWLsvGDrub3HA9oQa29_URucX_u5P1jX2BotpVJbkMwAzanXa-oYw88Z02QHnxrsezdimJPVShADjMtMvrqXZJwbKZT-L0iJlEornsE394IgFXAwIJfhL_9Bb8Mcx_yeVkuqQStYBsMK5e9JKWJnj9EPLp4sELvYYe_ssIsddrUjZ16sGY-If_ksCBHCsN8lXLT-</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Meyer, P.E.</creator><creator>Schretter, C.</creator><creator>Bontempi, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope><scope>Q33</scope></search><sort><creationdate>20080601</creationdate><title>Information-Theoretic Feature Selection in Microarray Data Using Variable Complementarity</title><author>Meyer, P.E. ; Schretter, C. ; Bontempi, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-826ddcb4d9b5d133a47f4c28d4d4c253b792c4a8e8d6a6b1fb2114d64a3855733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cancer</topic><topic>Classification</topic><topic>Criteria</topic><topic>Data analysis</topic><topic>Digital signal processing</topic><topic>Dispersions</topic><topic>Engineering, computing &amp; technology</topic><topic>Information filtering</topic><topic>Information filters</topic><topic>Information-theoretic feature selection</topic><topic>Ingénierie, informatique &amp; technologie</topic><topic>Input variables</topic><topic>Machine learning</topic><topic>Medical treatment</topic><topic>Mutual information</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>Signal processing</topic><topic>Stochastic processes</topic><topic>Strategy</topic><topic>Studies</topic><topic>Tasks</topic><topic>variable complementarity</topic><topic>variable interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, P.E.</creatorcontrib><creatorcontrib>Schretter, C.</creatorcontrib><creatorcontrib>Bontempi, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meyer, P.E.</au><au>Schretter, C.</au><au>Bontempi, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information-Theoretic Feature Selection in Microarray Data Using Variable Complementarity</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2008-06-01</date><risdate>2008</risdate><volume>2</volume><issue>3</issue><spage>261</spage><epage>274</epage><pages>261-274</pages><issn>1932-4553</issn><issn>1941-0484</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>The paper presents an original filter approach for effective feature selection in microarray data characterized by a large number of input variables and a few samples. The approach is based on the use of a new information-theoretic selection, the double input symmetrical relevance (DISR), which relies on a measure of variable complementarity. This measure evaluates the additional information that a set of variables provides about the output with respect to the sum of each single variable contribution. We show that a variable selection approach based on DISR can be formulated as a quadratic optimization problem: the dispersion sum problem (DSP). To solve this problem, we use a strategy based on backward elimination and sequential replacement (BESR). The combination of BESR and the DISR criterion is compared in theoretical and experimental terms to recently proposed information-theoretic criteria. Experimental results on a synthetic dataset as well as on a set of eleven microarray classification tasks show that the proposed technique is competitive with existing filter selection methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2008.923858</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2008-06, Vol.2 (3), p.261-274
issn 1932-4553
1941-0484
1941-0484
language eng
recordid cdi_proquest_miscellaneous_1671419166
source IEEE Electronic Library (IEL)
subjects Cancer
Classification
Criteria
Data analysis
Digital signal processing
Dispersions
Engineering, computing & technology
Information filtering
Information filters
Information-theoretic feature selection
Ingénierie, informatique & technologie
Input variables
Machine learning
Medical treatment
Mutual information
Optimization
Predictive models
Signal processing
Stochastic processes
Strategy
Studies
Tasks
variable complementarity
variable interaction
title Information-Theoretic Feature Selection in Microarray Data Using Variable Complementarity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T11%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information-Theoretic%20Feature%20Selection%20in%20Microarray%20Data%20Using%20Variable%20Complementarity&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Meyer,%20P.E.&rft.date=2008-06-01&rft.volume=2&rft.issue=3&rft.spage=261&rft.epage=274&rft.pages=261-274&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2008.923858&rft_dat=%3Cproquest_RIE%3E875091346%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=862818718&rft_id=info:pmid/&rft_ieee_id=4550559&rfr_iscdi=true