Numerical solution of the Ericksen–Leslie dynamic equations for two-dimensional nematic liquid crystal flows

A finite difference method for solving nematic liquid crystal flows under the effect of a magnetic field is developed. The dynamic equations of nematic liquid crystals, given by the Ericksen–Leslie dynamic theory, are employed. These are expressed in terms of primitive variables and solved employing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2013-08, Vol.247, p.109-136
Hauptverfasser: Cruz, Pedro A., Tomé, Murilo F., Stewart, Iain W., McKee, Sean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue
container_start_page 109
container_title Journal of computational physics
container_volume 247
creator Cruz, Pedro A.
Tomé, Murilo F.
Stewart, Iain W.
McKee, Sean
description A finite difference method for solving nematic liquid crystal flows under the effect of a magnetic field is developed. The dynamic equations of nematic liquid crystals, given by the Ericksen–Leslie dynamic theory, are employed. These are expressed in terms of primitive variables and solved employing the ideas behind the GENSMAC methodology (Tomé and McKee, 1994; Tomé et al., 2002) [38,41]. These equations are nonlinear partial differential equations consisting of the mass conservation equation and the balance laws of linear and angular momentum. By employing fully developed flow assumptions an analytic solution for steady 2D-channel flow is found. The resulting numerical technique was then, in part, validated by comparing numerical solutions against this analytic solution. Convergence results are presented. To demonstrate the capabilities of the numerical method, the flow of a nematic liquid crystal through various complex geometries are then simulated. Results are obtained for L-shaped channels and planar 4:1 contraction for several values of Reynolds and Ericksen numbers.
doi_str_mv 10.1016/j.jcp.2013.03.061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671415328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999113002453</els_id><sourcerecordid>1671415328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-8080c1139004ec8d8e2c823e63557fdc4610fc2e8109bc8f8750efa737c7dd03</originalsourceid><addsrcrecordid>eNp9UEFu2zAQJIoEiOPkAb3xmIucXdGSKORUGGkbwGgvvhPKconSlUSblBr41j_0h31JaLjnAgMsMDszwIwQHxFWCFg_7ld7OqxKQLWCjBo_iAVCC0XZYH0lFgAlFm3b4o24TWkPALpa64UYv80DR09dL1Po58mHUQYnpx8snzP9M_H49_efLafes7SnsRs8ST7O3VmZpAtRTm-hsH7gMWUq54w85C_J3h9nbyXFU5oy7frwlu7Etev6xPf_7lLsPj_vNl-L7fcvL5tP24KUgqnQoIEQVQuwZtJWc0m6VFyrqmqcpXWN4KhknSu-kna6qYBd16iGGmtBLcXDJfYQw3HmNJnBJ-K-70YOczJYN7jGSpU6S_EipRhSiuzMIfqhiyeDYM7Tmr3J05rztAYyasyep4uHc4VfnqNJ5Hkktj4yTcYG_x_3O1NUhE4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671415328</pqid></control><display><type>article</type><title>Numerical solution of the Ericksen–Leslie dynamic equations for two-dimensional nematic liquid crystal flows</title><source>Elsevier ScienceDirect Journals</source><creator>Cruz, Pedro A. ; Tomé, Murilo F. ; Stewart, Iain W. ; McKee, Sean</creator><creatorcontrib>Cruz, Pedro A. ; Tomé, Murilo F. ; Stewart, Iain W. ; McKee, Sean</creatorcontrib><description>A finite difference method for solving nematic liquid crystal flows under the effect of a magnetic field is developed. The dynamic equations of nematic liquid crystals, given by the Ericksen–Leslie dynamic theory, are employed. These are expressed in terms of primitive variables and solved employing the ideas behind the GENSMAC methodology (Tomé and McKee, 1994; Tomé et al., 2002) [38,41]. These equations are nonlinear partial differential equations consisting of the mass conservation equation and the balance laws of linear and angular momentum. By employing fully developed flow assumptions an analytic solution for steady 2D-channel flow is found. The resulting numerical technique was then, in part, validated by comparing numerical solutions against this analytic solution. Convergence results are presented. To demonstrate the capabilities of the numerical method, the flow of a nematic liquid crystal through various complex geometries are then simulated. Results are obtained for L-shaped channels and planar 4:1 contraction for several values of Reynolds and Ericksen numbers.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2013.03.061</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Analytic solution ; Channels ; Ericksen–Leslie equations ; Exact solutions ; Finite difference ; Laws ; Liquid crystals ; Mathematical analysis ; Mathematical models ; Nematic ; Nematic liquid crystal ; Nonlinear dynamics ; Two-dimensional flow</subject><ispartof>Journal of computational physics, 2013-08, Vol.247, p.109-136</ispartof><rights>2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-8080c1139004ec8d8e2c823e63557fdc4610fc2e8109bc8f8750efa737c7dd03</citedby><cites>FETCH-LOGICAL-c330t-8080c1139004ec8d8e2c823e63557fdc4610fc2e8109bc8f8750efa737c7dd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999113002453$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cruz, Pedro A.</creatorcontrib><creatorcontrib>Tomé, Murilo F.</creatorcontrib><creatorcontrib>Stewart, Iain W.</creatorcontrib><creatorcontrib>McKee, Sean</creatorcontrib><title>Numerical solution of the Ericksen–Leslie dynamic equations for two-dimensional nematic liquid crystal flows</title><title>Journal of computational physics</title><description>A finite difference method for solving nematic liquid crystal flows under the effect of a magnetic field is developed. The dynamic equations of nematic liquid crystals, given by the Ericksen–Leslie dynamic theory, are employed. These are expressed in terms of primitive variables and solved employing the ideas behind the GENSMAC methodology (Tomé and McKee, 1994; Tomé et al., 2002) [38,41]. These equations are nonlinear partial differential equations consisting of the mass conservation equation and the balance laws of linear and angular momentum. By employing fully developed flow assumptions an analytic solution for steady 2D-channel flow is found. The resulting numerical technique was then, in part, validated by comparing numerical solutions against this analytic solution. Convergence results are presented. To demonstrate the capabilities of the numerical method, the flow of a nematic liquid crystal through various complex geometries are then simulated. Results are obtained for L-shaped channels and planar 4:1 contraction for several values of Reynolds and Ericksen numbers.</description><subject>Analytic solution</subject><subject>Channels</subject><subject>Ericksen–Leslie equations</subject><subject>Exact solutions</subject><subject>Finite difference</subject><subject>Laws</subject><subject>Liquid crystals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nematic</subject><subject>Nematic liquid crystal</subject><subject>Nonlinear dynamics</subject><subject>Two-dimensional flow</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9UEFu2zAQJIoEiOPkAb3xmIucXdGSKORUGGkbwGgvvhPKconSlUSblBr41j_0h31JaLjnAgMsMDszwIwQHxFWCFg_7ld7OqxKQLWCjBo_iAVCC0XZYH0lFgAlFm3b4o24TWkPALpa64UYv80DR09dL1Po58mHUQYnpx8snzP9M_H49_efLafes7SnsRs8ST7O3VmZpAtRTm-hsH7gMWUq54w85C_J3h9nbyXFU5oy7frwlu7Etev6xPf_7lLsPj_vNl-L7fcvL5tP24KUgqnQoIEQVQuwZtJWc0m6VFyrqmqcpXWN4KhknSu-kna6qYBd16iGGmtBLcXDJfYQw3HmNJnBJ-K-70YOczJYN7jGSpU6S_EipRhSiuzMIfqhiyeDYM7Tmr3J05rztAYyasyep4uHc4VfnqNJ5Hkktj4yTcYG_x_3O1NUhE4</recordid><startdate>20130815</startdate><enddate>20130815</enddate><creator>Cruz, Pedro A.</creator><creator>Tomé, Murilo F.</creator><creator>Stewart, Iain W.</creator><creator>McKee, Sean</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130815</creationdate><title>Numerical solution of the Ericksen–Leslie dynamic equations for two-dimensional nematic liquid crystal flows</title><author>Cruz, Pedro A. ; Tomé, Murilo F. ; Stewart, Iain W. ; McKee, Sean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-8080c1139004ec8d8e2c823e63557fdc4610fc2e8109bc8f8750efa737c7dd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analytic solution</topic><topic>Channels</topic><topic>Ericksen–Leslie equations</topic><topic>Exact solutions</topic><topic>Finite difference</topic><topic>Laws</topic><topic>Liquid crystals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nematic</topic><topic>Nematic liquid crystal</topic><topic>Nonlinear dynamics</topic><topic>Two-dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cruz, Pedro A.</creatorcontrib><creatorcontrib>Tomé, Murilo F.</creatorcontrib><creatorcontrib>Stewart, Iain W.</creatorcontrib><creatorcontrib>McKee, Sean</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cruz, Pedro A.</au><au>Tomé, Murilo F.</au><au>Stewart, Iain W.</au><au>McKee, Sean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical solution of the Ericksen–Leslie dynamic equations for two-dimensional nematic liquid crystal flows</atitle><jtitle>Journal of computational physics</jtitle><date>2013-08-15</date><risdate>2013</risdate><volume>247</volume><spage>109</spage><epage>136</epage><pages>109-136</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A finite difference method for solving nematic liquid crystal flows under the effect of a magnetic field is developed. The dynamic equations of nematic liquid crystals, given by the Ericksen–Leslie dynamic theory, are employed. These are expressed in terms of primitive variables and solved employing the ideas behind the GENSMAC methodology (Tomé and McKee, 1994; Tomé et al., 2002) [38,41]. These equations are nonlinear partial differential equations consisting of the mass conservation equation and the balance laws of linear and angular momentum. By employing fully developed flow assumptions an analytic solution for steady 2D-channel flow is found. The resulting numerical technique was then, in part, validated by comparing numerical solutions against this analytic solution. Convergence results are presented. To demonstrate the capabilities of the numerical method, the flow of a nematic liquid crystal through various complex geometries are then simulated. Results are obtained for L-shaped channels and planar 4:1 contraction for several values of Reynolds and Ericksen numbers.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2013.03.061</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2013-08, Vol.247, p.109-136
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_1671415328
source Elsevier ScienceDirect Journals
subjects Analytic solution
Channels
Ericksen–Leslie equations
Exact solutions
Finite difference
Laws
Liquid crystals
Mathematical analysis
Mathematical models
Nematic
Nematic liquid crystal
Nonlinear dynamics
Two-dimensional flow
title Numerical solution of the Ericksen–Leslie dynamic equations for two-dimensional nematic liquid crystal flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20solution%20of%20the%20Ericksen%E2%80%93Leslie%20dynamic%20equations%20for%20two-dimensional%20nematic%20liquid%20crystal%20flows&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Cruz,%20Pedro%20A.&rft.date=2013-08-15&rft.volume=247&rft.spage=109&rft.epage=136&rft.pages=109-136&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2013.03.061&rft_dat=%3Cproquest_cross%3E1671415328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671415328&rft_id=info:pmid/&rft_els_id=S0021999113002453&rfr_iscdi=true