One-dimensional-turbulence simulation of flame extinction and reignition in planar ethylene jet flames

A series of three simulations of temporally evolving, planar, nonpremixed ethylene jet flames are performed using the one-dimensional-turbulence (ODT) model. The simulations are performed at a fixed Reynolds number, but varying Damköhler numbers, under conditions that result in significant flame ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2012-09, Vol.159 (9), p.2930-2943
Hauptverfasser: Lignell, David O., Rappleye, Devin S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2943
container_issue 9
container_start_page 2930
container_title Combustion and flame
container_volume 159
creator Lignell, David O.
Rappleye, Devin S.
description A series of three simulations of temporally evolving, planar, nonpremixed ethylene jet flames are performed using the one-dimensional-turbulence (ODT) model. The simulations are performed at a fixed Reynolds number, but varying Damköhler numbers, under conditions that result in significant flame extinction and reignition. Results are compared to corresponding direct numerical simulations (DNSs), which exhibit 40, 70, and nearly 100% peak flame extinction among the three cases. The planar, temporal configuration is ideal for comparison and validation of the ODT model, and identical thermodynamic, transport, and kinetic models were used. The ODT model captures the jet evolution and heat release effects. Line of sight profiles are qualitatively similar between the ODT and DNS. Good agreement is found for scalar dissipation statistics. While ODT captures the flame extinction process, the level of flame reignition is underpredicted, and conditional mean temperature profiles are depressed during reignition compared to the DNS. This is in contrast to previous ODT studies using CO/H2 mixtures (syngas). As a one-dimensional model, ODT is unable to capture multi-dimensional edge flame propagation during reignition, but is able to capture reignition via flame folding. Given the fidelity of the fine-scale transport and reaction processes built into ODT, and good flow modeling observed, more reduced combustion models will be challenged to capture nonpremixed flame reignition.
doi_str_mv 10.1016/j.combustflame.2012.03.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671415127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001021801200106X</els_id><sourcerecordid>1671415127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-31509274bdd16e5db1bb17e4251ff389a5cf8633d1df4a7aa7e7b9e5c0a4d04a3</originalsourceid><addsrcrecordid>eNqNkE9r3DAQxUVpodu038EEAr3YmZFsy9tbyZ-mEMilPQtZGrVabHkrySH59tXuhpJjT8MMb96b-TF2jtAgYH-5a8wyj2vKbtIzNRyQNyAawOEN22DX9TXfcnzLNgAINccB3rMPKe0AQLZCbJh7CFRbP1NIfgl6qvMax3WiYKhKfl4nncu8Wlx1TKjoKftgjjMdbBXJ_wr-2PpQ7ScddKwo_34uDlTtKJ_W0kf2zukp0aeXesZ-3t78uLqr7x--fb_6el8bMchcC-xgy2U7Wos9dXbEcURJLe_QOTFsdWfc0Ath0bpWS60lyXFLnQHdWmi1OGOfT777uPxZKWU1-2RoKofRsiaFvcQWO-SySL-cpCYuKUVyah_9rOOzQlAHuGqnXsNVB7gKhCpwy_LFS45ORk8u6mB8-ufAe9Fi-aTork86Kk8_eooqGX-Aa30kk5Vd_P_E_QWNKple</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671415127</pqid></control><display><type>article</type><title>One-dimensional-turbulence simulation of flame extinction and reignition in planar ethylene jet flames</title><source>Elsevier ScienceDirect Journals</source><creator>Lignell, David O. ; Rappleye, Devin S.</creator><creatorcontrib>Lignell, David O. ; Rappleye, Devin S.</creatorcontrib><description>A series of three simulations of temporally evolving, planar, nonpremixed ethylene jet flames are performed using the one-dimensional-turbulence (ODT) model. The simulations are performed at a fixed Reynolds number, but varying Damköhler numbers, under conditions that result in significant flame extinction and reignition. Results are compared to corresponding direct numerical simulations (DNSs), which exhibit 40, 70, and nearly 100% peak flame extinction among the three cases. The planar, temporal configuration is ideal for comparison and validation of the ODT model, and identical thermodynamic, transport, and kinetic models were used. The ODT model captures the jet evolution and heat release effects. Line of sight profiles are qualitatively similar between the ODT and DNS. Good agreement is found for scalar dissipation statistics. While ODT captures the flame extinction process, the level of flame reignition is underpredicted, and conditional mean temperature profiles are depressed during reignition compared to the DNS. This is in contrast to previous ODT studies using CO/H2 mixtures (syngas). As a one-dimensional model, ODT is unable to capture multi-dimensional edge flame propagation during reignition, but is able to capture reignition via flame folding. Given the fidelity of the fine-scale transport and reaction processes built into ODT, and good flow modeling observed, more reduced combustion models will be challenged to capture nonpremixed flame reignition.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2012.03.018</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Applied sciences ; Combustion ; Combustion. Flame ; Computer simulation ; Energy ; Energy. Thermal use of fuels ; Ethylene ; Exact sciences and technology ; Extinction ; Jet flames ; Mathematical models ; Nonpremixed flames ; One-dimensional-turbulence ; Reignition ; Simulation ; Theoretical studies. Data and constants. Metering ; Transport</subject><ispartof>Combustion and flame, 2012-09, Vol.159 (9), p.2930-2943</ispartof><rights>2012 The Combustion Institute.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-31509274bdd16e5db1bb17e4251ff389a5cf8633d1df4a7aa7e7b9e5c0a4d04a3</citedby><cites>FETCH-LOGICAL-c387t-31509274bdd16e5db1bb17e4251ff389a5cf8633d1df4a7aa7e7b9e5c0a4d04a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2012.03.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26341092$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lignell, David O.</creatorcontrib><creatorcontrib>Rappleye, Devin S.</creatorcontrib><title>One-dimensional-turbulence simulation of flame extinction and reignition in planar ethylene jet flames</title><title>Combustion and flame</title><description>A series of three simulations of temporally evolving, planar, nonpremixed ethylene jet flames are performed using the one-dimensional-turbulence (ODT) model. The simulations are performed at a fixed Reynolds number, but varying Damköhler numbers, under conditions that result in significant flame extinction and reignition. Results are compared to corresponding direct numerical simulations (DNSs), which exhibit 40, 70, and nearly 100% peak flame extinction among the three cases. The planar, temporal configuration is ideal for comparison and validation of the ODT model, and identical thermodynamic, transport, and kinetic models were used. The ODT model captures the jet evolution and heat release effects. Line of sight profiles are qualitatively similar between the ODT and DNS. Good agreement is found for scalar dissipation statistics. While ODT captures the flame extinction process, the level of flame reignition is underpredicted, and conditional mean temperature profiles are depressed during reignition compared to the DNS. This is in contrast to previous ODT studies using CO/H2 mixtures (syngas). As a one-dimensional model, ODT is unable to capture multi-dimensional edge flame propagation during reignition, but is able to capture reignition via flame folding. Given the fidelity of the fine-scale transport and reaction processes built into ODT, and good flow modeling observed, more reduced combustion models will be challenged to capture nonpremixed flame reignition.</description><subject>Applied sciences</subject><subject>Combustion</subject><subject>Combustion. Flame</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Ethylene</subject><subject>Exact sciences and technology</subject><subject>Extinction</subject><subject>Jet flames</subject><subject>Mathematical models</subject><subject>Nonpremixed flames</subject><subject>One-dimensional-turbulence</subject><subject>Reignition</subject><subject>Simulation</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Transport</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE9r3DAQxUVpodu038EEAr3YmZFsy9tbyZ-mEMilPQtZGrVabHkrySH59tXuhpJjT8MMb96b-TF2jtAgYH-5a8wyj2vKbtIzNRyQNyAawOEN22DX9TXfcnzLNgAINccB3rMPKe0AQLZCbJh7CFRbP1NIfgl6qvMax3WiYKhKfl4nncu8Wlx1TKjoKftgjjMdbBXJ_wr-2PpQ7ScddKwo_34uDlTtKJ_W0kf2zukp0aeXesZ-3t78uLqr7x--fb_6el8bMchcC-xgy2U7Wos9dXbEcURJLe_QOTFsdWfc0Ath0bpWS60lyXFLnQHdWmi1OGOfT777uPxZKWU1-2RoKofRsiaFvcQWO-SySL-cpCYuKUVyah_9rOOzQlAHuGqnXsNVB7gKhCpwy_LFS45ORk8u6mB8-ufAe9Fi-aTork86Kk8_eooqGX-Aa30kk5Vd_P_E_QWNKple</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Lignell, David O.</creator><creator>Rappleye, Devin S.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20120901</creationdate><title>One-dimensional-turbulence simulation of flame extinction and reignition in planar ethylene jet flames</title><author>Lignell, David O. ; Rappleye, Devin S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-31509274bdd16e5db1bb17e4251ff389a5cf8633d1df4a7aa7e7b9e5c0a4d04a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Combustion</topic><topic>Combustion. Flame</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Ethylene</topic><topic>Exact sciences and technology</topic><topic>Extinction</topic><topic>Jet flames</topic><topic>Mathematical models</topic><topic>Nonpremixed flames</topic><topic>One-dimensional-turbulence</topic><topic>Reignition</topic><topic>Simulation</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lignell, David O.</creatorcontrib><creatorcontrib>Rappleye, Devin S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lignell, David O.</au><au>Rappleye, Devin S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-dimensional-turbulence simulation of flame extinction and reignition in planar ethylene jet flames</atitle><jtitle>Combustion and flame</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>159</volume><issue>9</issue><spage>2930</spage><epage>2943</epage><pages>2930-2943</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>A series of three simulations of temporally evolving, planar, nonpremixed ethylene jet flames are performed using the one-dimensional-turbulence (ODT) model. The simulations are performed at a fixed Reynolds number, but varying Damköhler numbers, under conditions that result in significant flame extinction and reignition. Results are compared to corresponding direct numerical simulations (DNSs), which exhibit 40, 70, and nearly 100% peak flame extinction among the three cases. The planar, temporal configuration is ideal for comparison and validation of the ODT model, and identical thermodynamic, transport, and kinetic models were used. The ODT model captures the jet evolution and heat release effects. Line of sight profiles are qualitatively similar between the ODT and DNS. Good agreement is found for scalar dissipation statistics. While ODT captures the flame extinction process, the level of flame reignition is underpredicted, and conditional mean temperature profiles are depressed during reignition compared to the DNS. This is in contrast to previous ODT studies using CO/H2 mixtures (syngas). As a one-dimensional model, ODT is unable to capture multi-dimensional edge flame propagation during reignition, but is able to capture reignition via flame folding. Given the fidelity of the fine-scale transport and reaction processes built into ODT, and good flow modeling observed, more reduced combustion models will be challenged to capture nonpremixed flame reignition.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2012.03.018</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2012-09, Vol.159 (9), p.2930-2943
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_miscellaneous_1671415127
source Elsevier ScienceDirect Journals
subjects Applied sciences
Combustion
Combustion. Flame
Computer simulation
Energy
Energy. Thermal use of fuels
Ethylene
Exact sciences and technology
Extinction
Jet flames
Mathematical models
Nonpremixed flames
One-dimensional-turbulence
Reignition
Simulation
Theoretical studies. Data and constants. Metering
Transport
title One-dimensional-turbulence simulation of flame extinction and reignition in planar ethylene jet flames
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-dimensional-turbulence%20simulation%20of%20flame%20extinction%20and%20reignition%20in%20planar%20ethylene%20jet%20flames&rft.jtitle=Combustion%20and%20flame&rft.au=Lignell,%20David%20O.&rft.date=2012-09-01&rft.volume=159&rft.issue=9&rft.spage=2930&rft.epage=2943&rft.pages=2930-2943&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/j.combustflame.2012.03.018&rft_dat=%3Cproquest_cross%3E1671415127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671415127&rft_id=info:pmid/&rft_els_id=S001021801200106X&rfr_iscdi=true