Large-scale thermal analysis of fiber composites using a line-inclusion model by the fast boundary element method

The fast boundary element method is applied for the three-dimensional large-scale thermal analysis of fiber-reinforced composites based on a line inclusion model. In this approach, fibers are treated as inclusions with temperature assumed constant over the circular cross-section and varying along th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering analysis with boundary elements 2013-02, Vol.37 (2), p.319-326
Hauptverfasser: Wang, H.T., Yao, Z.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 326
container_issue 2
container_start_page 319
container_title Engineering analysis with boundary elements
container_volume 37
creator Wang, H.T.
Yao, Z.H.
description The fast boundary element method is applied for the three-dimensional large-scale thermal analysis of fiber-reinforced composites based on a line inclusion model. In this approach, fibers are treated as inclusions with temperature assumed constant over the circular cross-section and varying along the length direction. Therefore, fibers can be meshed with line elements, making both the modeling complexity and the number of unknowns significantly reduced. An interface integral boundary element method introduced by Gao in 2009 (Engineering Analysis with Boundary Elements 2009; 33: 539–546) is extended to generate a single-domain boundary integral equation for governing this line-inclusion problem. Thus in principle, fibers with arbitrary length can be modeled. The fast multipole method is employed for the fast analysis of such problems with large-scales. The largest composite model in a personal desktop computer has the number of fibers reaching 20,000. Numerical results clearly demonstrate validity of the proposed model and its potential for large-scale analysis of fiber-reinforced composites.
doi_str_mv 10.1016/j.enganabound.2012.11.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671412939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799712002196</els_id><sourcerecordid>1671412939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-6467638979868c509ab74319c6c6221733a0a43d7aec9be6aac0348cc1dadfc03</originalsourceid><addsrcrecordid>eNqNkDFv2zAQhYkgBeKk_Q_slkUKT5RJcSyMNglgoEsLdCNO1MmhQZEOKRfwv48cd8jY6Q6H9x7efYx9BVGDAPWwrynuMGKfjnGoGwFNDVALoa_YCjotKzD6zzVbCbNeV9oYfcNuS9kLAVIItWKvW8w7qorDQHx-oTxh4EteOBVfeBr56HvK3KXpkIqfqfBj8XHHkQcfqfLRheWQIp_SQIH3p3MIH7HM_L0S5hOnQBPFmU80v6ThM_s0Yij05d-8Y79_fP-1eaq2Px-fN9-2lZPrdq5Uq7SSndGmU51bC4O9biUYp5xqGtBSosBWDhrJmZ4UohOy7ZyDAYdx2e_Y_SX3kNPrkcpsJ18chYCR0rFYUBpaaIw0i9RcpC6nUjKN9pD9tFS3IOwZs93bD5jtGbMFsAvmxbu5eGn55a-nbIvzFB0NPpOb7ZD8f6S8AW3ZjjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671412939</pqid></control><display><type>article</type><title>Large-scale thermal analysis of fiber composites using a line-inclusion model by the fast boundary element method</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, H.T. ; Yao, Z.H.</creator><creatorcontrib>Wang, H.T. ; Yao, Z.H.</creatorcontrib><description>The fast boundary element method is applied for the three-dimensional large-scale thermal analysis of fiber-reinforced composites based on a line inclusion model. In this approach, fibers are treated as inclusions with temperature assumed constant over the circular cross-section and varying along the length direction. Therefore, fibers can be meshed with line elements, making both the modeling complexity and the number of unknowns significantly reduced. An interface integral boundary element method introduced by Gao in 2009 (Engineering Analysis with Boundary Elements 2009; 33: 539–546) is extended to generate a single-domain boundary integral equation for governing this line-inclusion problem. Thus in principle, fibers with arbitrary length can be modeled. The fast multipole method is employed for the fast analysis of such problems with large-scales. The largest composite model in a personal desktop computer has the number of fibers reaching 20,000. Numerical results clearly demonstrate validity of the proposed model and its potential for large-scale analysis of fiber-reinforced composites.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/j.enganabound.2012.11.007</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Boundaries ; Boundary element ; Boundary element method ; Fast multipole method ; Fiber composites ; Fibers ; Inclusions ; Line inclusion ; Mathematical analysis ; Mathematical models ; Thermal analysis</subject><ispartof>Engineering analysis with boundary elements, 2013-02, Vol.37 (2), p.319-326</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-6467638979868c509ab74319c6c6221733a0a43d7aec9be6aac0348cc1dadfc03</citedby><cites>FETCH-LOGICAL-c354t-6467638979868c509ab74319c6c6221733a0a43d7aec9be6aac0348cc1dadfc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enganabound.2012.11.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, H.T.</creatorcontrib><creatorcontrib>Yao, Z.H.</creatorcontrib><title>Large-scale thermal analysis of fiber composites using a line-inclusion model by the fast boundary element method</title><title>Engineering analysis with boundary elements</title><description>The fast boundary element method is applied for the three-dimensional large-scale thermal analysis of fiber-reinforced composites based on a line inclusion model. In this approach, fibers are treated as inclusions with temperature assumed constant over the circular cross-section and varying along the length direction. Therefore, fibers can be meshed with line elements, making both the modeling complexity and the number of unknowns significantly reduced. An interface integral boundary element method introduced by Gao in 2009 (Engineering Analysis with Boundary Elements 2009; 33: 539–546) is extended to generate a single-domain boundary integral equation for governing this line-inclusion problem. Thus in principle, fibers with arbitrary length can be modeled. The fast multipole method is employed for the fast analysis of such problems with large-scales. The largest composite model in a personal desktop computer has the number of fibers reaching 20,000. Numerical results clearly demonstrate validity of the proposed model and its potential for large-scale analysis of fiber-reinforced composites.</description><subject>Boundaries</subject><subject>Boundary element</subject><subject>Boundary element method</subject><subject>Fast multipole method</subject><subject>Fiber composites</subject><subject>Fibers</subject><subject>Inclusions</subject><subject>Line inclusion</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Thermal analysis</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkDFv2zAQhYkgBeKk_Q_slkUKT5RJcSyMNglgoEsLdCNO1MmhQZEOKRfwv48cd8jY6Q6H9x7efYx9BVGDAPWwrynuMGKfjnGoGwFNDVALoa_YCjotKzD6zzVbCbNeV9oYfcNuS9kLAVIItWKvW8w7qorDQHx-oTxh4EteOBVfeBr56HvK3KXpkIqfqfBj8XHHkQcfqfLRheWQIp_SQIH3p3MIH7HM_L0S5hOnQBPFmU80v6ThM_s0Yij05d-8Y79_fP-1eaq2Px-fN9-2lZPrdq5Uq7SSndGmU51bC4O9biUYp5xqGtBSosBWDhrJmZ4UohOy7ZyDAYdx2e_Y_SX3kNPrkcpsJ18chYCR0rFYUBpaaIw0i9RcpC6nUjKN9pD9tFS3IOwZs93bD5jtGbMFsAvmxbu5eGn55a-nbIvzFB0NPpOb7ZD8f6S8AW3ZjjQ</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Wang, H.T.</creator><creator>Yao, Z.H.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130201</creationdate><title>Large-scale thermal analysis of fiber composites using a line-inclusion model by the fast boundary element method</title><author>Wang, H.T. ; Yao, Z.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-6467638979868c509ab74319c6c6221733a0a43d7aec9be6aac0348cc1dadfc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundaries</topic><topic>Boundary element</topic><topic>Boundary element method</topic><topic>Fast multipole method</topic><topic>Fiber composites</topic><topic>Fibers</topic><topic>Inclusions</topic><topic>Line inclusion</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, H.T.</creatorcontrib><creatorcontrib>Yao, Z.H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, H.T.</au><au>Yao, Z.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale thermal analysis of fiber composites using a line-inclusion model by the fast boundary element method</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>37</volume><issue>2</issue><spage>319</spage><epage>326</epage><pages>319-326</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>The fast boundary element method is applied for the three-dimensional large-scale thermal analysis of fiber-reinforced composites based on a line inclusion model. In this approach, fibers are treated as inclusions with temperature assumed constant over the circular cross-section and varying along the length direction. Therefore, fibers can be meshed with line elements, making both the modeling complexity and the number of unknowns significantly reduced. An interface integral boundary element method introduced by Gao in 2009 (Engineering Analysis with Boundary Elements 2009; 33: 539–546) is extended to generate a single-domain boundary integral equation for governing this line-inclusion problem. Thus in principle, fibers with arbitrary length can be modeled. The fast multipole method is employed for the fast analysis of such problems with large-scales. The largest composite model in a personal desktop computer has the number of fibers reaching 20,000. Numerical results clearly demonstrate validity of the proposed model and its potential for large-scale analysis of fiber-reinforced composites.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enganabound.2012.11.007</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0955-7997
ispartof Engineering analysis with boundary elements, 2013-02, Vol.37 (2), p.319-326
issn 0955-7997
1873-197X
language eng
recordid cdi_proquest_miscellaneous_1671412939
source ScienceDirect Journals (5 years ago - present)
subjects Boundaries
Boundary element
Boundary element method
Fast multipole method
Fiber composites
Fibers
Inclusions
Line inclusion
Mathematical analysis
Mathematical models
Thermal analysis
title Large-scale thermal analysis of fiber composites using a line-inclusion model by the fast boundary element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20thermal%20analysis%20of%20fiber%20composites%20using%20a%20line-inclusion%20model%20by%20the%20fast%20boundary%20element%20method&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Wang,%20H.T.&rft.date=2013-02-01&rft.volume=37&rft.issue=2&rft.spage=319&rft.epage=326&rft.pages=319-326&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2012.11.007&rft_dat=%3Cproquest_cross%3E1671412939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671412939&rft_id=info:pmid/&rft_els_id=S0955799712002196&rfr_iscdi=true