Large-scale thermal analysis of fiber composites using a line-inclusion model by the fast boundary element method
The fast boundary element method is applied for the three-dimensional large-scale thermal analysis of fiber-reinforced composites based on a line inclusion model. In this approach, fibers are treated as inclusions with temperature assumed constant over the circular cross-section and varying along th...
Gespeichert in:
Veröffentlicht in: | Engineering analysis with boundary elements 2013-02, Vol.37 (2), p.319-326 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 326 |
---|---|
container_issue | 2 |
container_start_page | 319 |
container_title | Engineering analysis with boundary elements |
container_volume | 37 |
creator | Wang, H.T. Yao, Z.H. |
description | The fast boundary element method is applied for the three-dimensional large-scale thermal analysis of fiber-reinforced composites based on a line inclusion model. In this approach, fibers are treated as inclusions with temperature assumed constant over the circular cross-section and varying along the length direction. Therefore, fibers can be meshed with line elements, making both the modeling complexity and the number of unknowns significantly reduced. An interface integral boundary element method introduced by Gao in 2009 (Engineering Analysis with Boundary Elements 2009; 33: 539–546) is extended to generate a single-domain boundary integral equation for governing this line-inclusion problem. Thus in principle, fibers with arbitrary length can be modeled. The fast multipole method is employed for the fast analysis of such problems with large-scales. The largest composite model in a personal desktop computer has the number of fibers reaching 20,000. Numerical results clearly demonstrate validity of the proposed model and its potential for large-scale analysis of fiber-reinforced composites. |
doi_str_mv | 10.1016/j.enganabound.2012.11.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671412939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955799712002196</els_id><sourcerecordid>1671412939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-6467638979868c509ab74319c6c6221733a0a43d7aec9be6aac0348cc1dadfc03</originalsourceid><addsrcrecordid>eNqNkDFv2zAQhYkgBeKk_Q_slkUKT5RJcSyMNglgoEsLdCNO1MmhQZEOKRfwv48cd8jY6Q6H9x7efYx9BVGDAPWwrynuMGKfjnGoGwFNDVALoa_YCjotKzD6zzVbCbNeV9oYfcNuS9kLAVIItWKvW8w7qorDQHx-oTxh4EteOBVfeBr56HvK3KXpkIqfqfBj8XHHkQcfqfLRheWQIp_SQIH3p3MIH7HM_L0S5hOnQBPFmU80v6ThM_s0Yij05d-8Y79_fP-1eaq2Px-fN9-2lZPrdq5Uq7SSndGmU51bC4O9biUYp5xqGtBSosBWDhrJmZ4UohOy7ZyDAYdx2e_Y_SX3kNPrkcpsJ18chYCR0rFYUBpaaIw0i9RcpC6nUjKN9pD9tFS3IOwZs93bD5jtGbMFsAvmxbu5eGn55a-nbIvzFB0NPpOb7ZD8f6S8AW3ZjjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671412939</pqid></control><display><type>article</type><title>Large-scale thermal analysis of fiber composites using a line-inclusion model by the fast boundary element method</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wang, H.T. ; Yao, Z.H.</creator><creatorcontrib>Wang, H.T. ; Yao, Z.H.</creatorcontrib><description>The fast boundary element method is applied for the three-dimensional large-scale thermal analysis of fiber-reinforced composites based on a line inclusion model. In this approach, fibers are treated as inclusions with temperature assumed constant over the circular cross-section and varying along the length direction. Therefore, fibers can be meshed with line elements, making both the modeling complexity and the number of unknowns significantly reduced. An interface integral boundary element method introduced by Gao in 2009 (Engineering Analysis with Boundary Elements 2009; 33: 539–546) is extended to generate a single-domain boundary integral equation for governing this line-inclusion problem. Thus in principle, fibers with arbitrary length can be modeled. The fast multipole method is employed for the fast analysis of such problems with large-scales. The largest composite model in a personal desktop computer has the number of fibers reaching 20,000. Numerical results clearly demonstrate validity of the proposed model and its potential for large-scale analysis of fiber-reinforced composites.</description><identifier>ISSN: 0955-7997</identifier><identifier>EISSN: 1873-197X</identifier><identifier>DOI: 10.1016/j.enganabound.2012.11.007</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Boundaries ; Boundary element ; Boundary element method ; Fast multipole method ; Fiber composites ; Fibers ; Inclusions ; Line inclusion ; Mathematical analysis ; Mathematical models ; Thermal analysis</subject><ispartof>Engineering analysis with boundary elements, 2013-02, Vol.37 (2), p.319-326</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-6467638979868c509ab74319c6c6221733a0a43d7aec9be6aac0348cc1dadfc03</citedby><cites>FETCH-LOGICAL-c354t-6467638979868c509ab74319c6c6221733a0a43d7aec9be6aac0348cc1dadfc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enganabound.2012.11.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Wang, H.T.</creatorcontrib><creatorcontrib>Yao, Z.H.</creatorcontrib><title>Large-scale thermal analysis of fiber composites using a line-inclusion model by the fast boundary element method</title><title>Engineering analysis with boundary elements</title><description>The fast boundary element method is applied for the three-dimensional large-scale thermal analysis of fiber-reinforced composites based on a line inclusion model. In this approach, fibers are treated as inclusions with temperature assumed constant over the circular cross-section and varying along the length direction. Therefore, fibers can be meshed with line elements, making both the modeling complexity and the number of unknowns significantly reduced. An interface integral boundary element method introduced by Gao in 2009 (Engineering Analysis with Boundary Elements 2009; 33: 539–546) is extended to generate a single-domain boundary integral equation for governing this line-inclusion problem. Thus in principle, fibers with arbitrary length can be modeled. The fast multipole method is employed for the fast analysis of such problems with large-scales. The largest composite model in a personal desktop computer has the number of fibers reaching 20,000. Numerical results clearly demonstrate validity of the proposed model and its potential for large-scale analysis of fiber-reinforced composites.</description><subject>Boundaries</subject><subject>Boundary element</subject><subject>Boundary element method</subject><subject>Fast multipole method</subject><subject>Fiber composites</subject><subject>Fibers</subject><subject>Inclusions</subject><subject>Line inclusion</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Thermal analysis</subject><issn>0955-7997</issn><issn>1873-197X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkDFv2zAQhYkgBeKk_Q_slkUKT5RJcSyMNglgoEsLdCNO1MmhQZEOKRfwv48cd8jY6Q6H9x7efYx9BVGDAPWwrynuMGKfjnGoGwFNDVALoa_YCjotKzD6zzVbCbNeV9oYfcNuS9kLAVIItWKvW8w7qorDQHx-oTxh4EteOBVfeBr56HvK3KXpkIqfqfBj8XHHkQcfqfLRheWQIp_SQIH3p3MIH7HM_L0S5hOnQBPFmU80v6ThM_s0Yij05d-8Y79_fP-1eaq2Px-fN9-2lZPrdq5Uq7SSndGmU51bC4O9biUYp5xqGtBSosBWDhrJmZ4UohOy7ZyDAYdx2e_Y_SX3kNPrkcpsJ18chYCR0rFYUBpaaIw0i9RcpC6nUjKN9pD9tFS3IOwZs93bD5jtGbMFsAvmxbu5eGn55a-nbIvzFB0NPpOb7ZD8f6S8AW3ZjjQ</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Wang, H.T.</creator><creator>Yao, Z.H.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130201</creationdate><title>Large-scale thermal analysis of fiber composites using a line-inclusion model by the fast boundary element method</title><author>Wang, H.T. ; Yao, Z.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-6467638979868c509ab74319c6c6221733a0a43d7aec9be6aac0348cc1dadfc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundaries</topic><topic>Boundary element</topic><topic>Boundary element method</topic><topic>Fast multipole method</topic><topic>Fiber composites</topic><topic>Fibers</topic><topic>Inclusions</topic><topic>Line inclusion</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Thermal analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, H.T.</creatorcontrib><creatorcontrib>Yao, Z.H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering analysis with boundary elements</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, H.T.</au><au>Yao, Z.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale thermal analysis of fiber composites using a line-inclusion model by the fast boundary element method</atitle><jtitle>Engineering analysis with boundary elements</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>37</volume><issue>2</issue><spage>319</spage><epage>326</epage><pages>319-326</pages><issn>0955-7997</issn><eissn>1873-197X</eissn><abstract>The fast boundary element method is applied for the three-dimensional large-scale thermal analysis of fiber-reinforced composites based on a line inclusion model. In this approach, fibers are treated as inclusions with temperature assumed constant over the circular cross-section and varying along the length direction. Therefore, fibers can be meshed with line elements, making both the modeling complexity and the number of unknowns significantly reduced. An interface integral boundary element method introduced by Gao in 2009 (Engineering Analysis with Boundary Elements 2009; 33: 539–546) is extended to generate a single-domain boundary integral equation for governing this line-inclusion problem. Thus in principle, fibers with arbitrary length can be modeled. The fast multipole method is employed for the fast analysis of such problems with large-scales. The largest composite model in a personal desktop computer has the number of fibers reaching 20,000. Numerical results clearly demonstrate validity of the proposed model and its potential for large-scale analysis of fiber-reinforced composites.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enganabound.2012.11.007</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-7997 |
ispartof | Engineering analysis with boundary elements, 2013-02, Vol.37 (2), p.319-326 |
issn | 0955-7997 1873-197X |
language | eng |
recordid | cdi_proquest_miscellaneous_1671412939 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Boundaries Boundary element Boundary element method Fast multipole method Fiber composites Fibers Inclusions Line inclusion Mathematical analysis Mathematical models Thermal analysis |
title | Large-scale thermal analysis of fiber composites using a line-inclusion model by the fast boundary element method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20thermal%20analysis%20of%20fiber%20composites%20using%20a%20line-inclusion%20model%20by%20the%20fast%20boundary%20element%20method&rft.jtitle=Engineering%20analysis%20with%20boundary%20elements&rft.au=Wang,%20H.T.&rft.date=2013-02-01&rft.volume=37&rft.issue=2&rft.spage=319&rft.epage=326&rft.pages=319-326&rft.issn=0955-7997&rft.eissn=1873-197X&rft_id=info:doi/10.1016/j.enganabound.2012.11.007&rft_dat=%3Cproquest_cross%3E1671412939%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671412939&rft_id=info:pmid/&rft_els_id=S0955799712002196&rfr_iscdi=true |