Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity

The Indonesian throughflow (ITF) is a chokepoint in the upper ocean thermohaline circulation, carrying Pacific waters through the strongly mixed Indonesian Seas and into the Indian Ocean. Yet the influence of the ITF on biogeochemical fluxes into the Indian Ocean is largely unknown. This study deter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2014-07, Vol.41 (14), p.5060-5067
Hauptverfasser: Ayers, Jennifer M., Strutton, Peter G., Coles, Victoria J., Hood, Raleigh R., Matear, Richard J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5067
container_issue 14
container_start_page 5060
container_title Geophysical research letters
container_volume 41
creator Ayers, Jennifer M.
Strutton, Peter G.
Coles, Victoria J.
Hood, Raleigh R.
Matear, Richard J.
description The Indonesian throughflow (ITF) is a chokepoint in the upper ocean thermohaline circulation, carrying Pacific waters through the strongly mixed Indonesian Seas and into the Indian Ocean. Yet the influence of the ITF on biogeochemical fluxes into the Indian Ocean is largely unknown. This study determines the first depth‐ and time‐resolved nitrate, phosphate, and silicate fluxes at the three main exit passages of the ITF: Lombok Strait, Ombai Strait, and Timor Passage. Nutrient flux as well as its variability with depth and time differs greatly between the passages. We estimate the effective flux of nutrients into the Indian Ocean by accounting for existing nutrients in the basin and find it largest in the upper 300–400 m. This suggests that the majority of ITF nutrient supply to the Indian Ocean is to thermocline waters, where it is likely to support new production and significantly impact Indian Ocean biogeochemical cycling. Key Points First quantification of Indonesian throughflow (ITF) nutrient fluxes Shallow ITF nutricline drives large nutrient flux to Indian Ocean thermocline ITF outflow large enough to support a significant amount of new production
doi_str_mv 10.1002/2014GL060593
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671411661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3545556301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4486-3f7b81ce5f84adaa0fa75713b9dbeedae7b487b0a415c496762b8f625aad0a5c3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhq0KpC6FGz8gUi8cCB0n_soRlXZbadVKiJYb1sRxWpesvdhO2_33eLUIIQ7gw9gaP-9jWUPIWwofKEBz0gBlyxUI4F17QBa0Y6xWAPIFWQB05dxIcUhepfQAAC20dEG-XfoheJsc-irfxzDf3Y9TeKr8nKOzPlfjND_bVKEfyr11sdqEXPoOp8qtN2hyFXxVJDvBtbGlbmIYZpPdo8vb1-TliFOyb37tR-Tm_OzL6UW9ul5enn5c1YYxJep2lL2ixvJRMRwQYUTJJW37buitHdDKninZAzLKDeuEFE2vRtFwxAGQm_aIvNt7y-M_ZpuyXrtk7DSht2FOmgpJGaVC0P-jXEhQioMq6PFf6EOYoy8fKULWAGeM7YTv95SJIaVoR72Jbo1xqyno3Vz0n3MpeLPHn9xkt_9k9fLzilMlRQnV-5BL2T7_DmH8roVsJddfr5Za3X7iF2VpaH8CJyyeDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642054441</pqid></control><display><type>article</type><title>Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity</title><source>Wiley-Blackwell Journals</source><source>Wiley Online Library</source><source>Wiley Online Library AGU Free Content</source><source>EZB Electronic Journals Library</source><creator>Ayers, Jennifer M. ; Strutton, Peter G. ; Coles, Victoria J. ; Hood, Raleigh R. ; Matear, Richard J.</creator><creatorcontrib>Ayers, Jennifer M. ; Strutton, Peter G. ; Coles, Victoria J. ; Hood, Raleigh R. ; Matear, Richard J.</creatorcontrib><description>The Indonesian throughflow (ITF) is a chokepoint in the upper ocean thermohaline circulation, carrying Pacific waters through the strongly mixed Indonesian Seas and into the Indian Ocean. Yet the influence of the ITF on biogeochemical fluxes into the Indian Ocean is largely unknown. This study determines the first depth‐ and time‐resolved nitrate, phosphate, and silicate fluxes at the three main exit passages of the ITF: Lombok Strait, Ombai Strait, and Timor Passage. Nutrient flux as well as its variability with depth and time differs greatly between the passages. We estimate the effective flux of nutrients into the Indian Ocean by accounting for existing nutrients in the basin and find it largest in the upper 300–400 m. This suggests that the majority of ITF nutrient supply to the Indian Ocean is to thermocline waters, where it is likely to support new production and significantly impact Indian Ocean biogeochemical cycling. Key Points First quantification of Indonesian throughflow (ITF) nutrient fluxes Shallow ITF nutricline drives large nutrient flux to Indian Ocean thermocline ITF outflow large enough to support a significant amount of new production</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2014GL060593</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Biogeochemical cycles ; Biogeochemistry ; Fluxes ; Geophysics ; Indian Ocean ; Indonesia ; Indonesian throughflow ; INSTANT ; Marine ; N:P ratio ; nutrient flux ; Nutrients ; Ocean currents ; Phosphates ; primary production ; Straits ; Thermocline ; Thermoclines ; Thermohaline circulation ; Upper ocean</subject><ispartof>Geophysical research letters, 2014-07, Vol.41 (14), p.5060-5067</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4486-3f7b81ce5f84adaa0fa75713b9dbeedae7b487b0a415c496762b8f625aad0a5c3</citedby><cites>FETCH-LOGICAL-c4486-3f7b81ce5f84adaa0fa75713b9dbeedae7b487b0a415c496762b8f625aad0a5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014GL060593$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014GL060593$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Ayers, Jennifer M.</creatorcontrib><creatorcontrib>Strutton, Peter G.</creatorcontrib><creatorcontrib>Coles, Victoria J.</creatorcontrib><creatorcontrib>Hood, Raleigh R.</creatorcontrib><creatorcontrib>Matear, Richard J.</creatorcontrib><title>Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>The Indonesian throughflow (ITF) is a chokepoint in the upper ocean thermohaline circulation, carrying Pacific waters through the strongly mixed Indonesian Seas and into the Indian Ocean. Yet the influence of the ITF on biogeochemical fluxes into the Indian Ocean is largely unknown. This study determines the first depth‐ and time‐resolved nitrate, phosphate, and silicate fluxes at the three main exit passages of the ITF: Lombok Strait, Ombai Strait, and Timor Passage. Nutrient flux as well as its variability with depth and time differs greatly between the passages. We estimate the effective flux of nutrients into the Indian Ocean by accounting for existing nutrients in the basin and find it largest in the upper 300–400 m. This suggests that the majority of ITF nutrient supply to the Indian Ocean is to thermocline waters, where it is likely to support new production and significantly impact Indian Ocean biogeochemical cycling. Key Points First quantification of Indonesian throughflow (ITF) nutrient fluxes Shallow ITF nutricline drives large nutrient flux to Indian Ocean thermocline ITF outflow large enough to support a significant amount of new production</description><subject>Biogeochemical cycles</subject><subject>Biogeochemistry</subject><subject>Fluxes</subject><subject>Geophysics</subject><subject>Indian Ocean</subject><subject>Indonesia</subject><subject>Indonesian throughflow</subject><subject>INSTANT</subject><subject>Marine</subject><subject>N:P ratio</subject><subject>nutrient flux</subject><subject>Nutrients</subject><subject>Ocean currents</subject><subject>Phosphates</subject><subject>primary production</subject><subject>Straits</subject><subject>Thermocline</subject><subject>Thermoclines</subject><subject>Thermohaline circulation</subject><subject>Upper ocean</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhq0KpC6FGz8gUi8cCB0n_soRlXZbadVKiJYb1sRxWpesvdhO2_33eLUIIQ7gw9gaP-9jWUPIWwofKEBz0gBlyxUI4F17QBa0Y6xWAPIFWQB05dxIcUhepfQAAC20dEG-XfoheJsc-irfxzDf3Y9TeKr8nKOzPlfjND_bVKEfyr11sdqEXPoOp8qtN2hyFXxVJDvBtbGlbmIYZpPdo8vb1-TliFOyb37tR-Tm_OzL6UW9ul5enn5c1YYxJep2lL2ixvJRMRwQYUTJJW37buitHdDKninZAzLKDeuEFE2vRtFwxAGQm_aIvNt7y-M_ZpuyXrtk7DSht2FOmgpJGaVC0P-jXEhQioMq6PFf6EOYoy8fKULWAGeM7YTv95SJIaVoR72Jbo1xqyno3Vz0n3MpeLPHn9xkt_9k9fLzilMlRQnV-5BL2T7_DmH8roVsJddfr5Za3X7iF2VpaH8CJyyeDw</recordid><startdate>20140728</startdate><enddate>20140728</enddate><creator>Ayers, Jennifer M.</creator><creator>Strutton, Peter G.</creator><creator>Coles, Victoria J.</creator><creator>Hood, Raleigh R.</creator><creator>Matear, Richard J.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20140728</creationdate><title>Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity</title><author>Ayers, Jennifer M. ; Strutton, Peter G. ; Coles, Victoria J. ; Hood, Raleigh R. ; Matear, Richard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4486-3f7b81ce5f84adaa0fa75713b9dbeedae7b487b0a415c496762b8f625aad0a5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biogeochemical cycles</topic><topic>Biogeochemistry</topic><topic>Fluxes</topic><topic>Geophysics</topic><topic>Indian Ocean</topic><topic>Indonesia</topic><topic>Indonesian throughflow</topic><topic>INSTANT</topic><topic>Marine</topic><topic>N:P ratio</topic><topic>nutrient flux</topic><topic>Nutrients</topic><topic>Ocean currents</topic><topic>Phosphates</topic><topic>primary production</topic><topic>Straits</topic><topic>Thermocline</topic><topic>Thermoclines</topic><topic>Thermohaline circulation</topic><topic>Upper ocean</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayers, Jennifer M.</creatorcontrib><creatorcontrib>Strutton, Peter G.</creatorcontrib><creatorcontrib>Coles, Victoria J.</creatorcontrib><creatorcontrib>Hood, Raleigh R.</creatorcontrib><creatorcontrib>Matear, Richard J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayers, Jennifer M.</au><au>Strutton, Peter G.</au><au>Coles, Victoria J.</au><au>Hood, Raleigh R.</au><au>Matear, Richard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2014-07-28</date><risdate>2014</risdate><volume>41</volume><issue>14</issue><spage>5060</spage><epage>5067</epage><pages>5060-5067</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The Indonesian throughflow (ITF) is a chokepoint in the upper ocean thermohaline circulation, carrying Pacific waters through the strongly mixed Indonesian Seas and into the Indian Ocean. Yet the influence of the ITF on biogeochemical fluxes into the Indian Ocean is largely unknown. This study determines the first depth‐ and time‐resolved nitrate, phosphate, and silicate fluxes at the three main exit passages of the ITF: Lombok Strait, Ombai Strait, and Timor Passage. Nutrient flux as well as its variability with depth and time differs greatly between the passages. We estimate the effective flux of nutrients into the Indian Ocean by accounting for existing nutrients in the basin and find it largest in the upper 300–400 m. This suggests that the majority of ITF nutrient supply to the Indian Ocean is to thermocline waters, where it is likely to support new production and significantly impact Indian Ocean biogeochemical cycling. Key Points First quantification of Indonesian throughflow (ITF) nutrient fluxes Shallow ITF nutricline drives large nutrient flux to Indian Ocean thermocline ITF outflow large enough to support a significant amount of new production</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014GL060593</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2014-07, Vol.41 (14), p.5060-5067
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1671411661
source Wiley-Blackwell Journals; Wiley Online Library; Wiley Online Library AGU Free Content; EZB Electronic Journals Library
subjects Biogeochemical cycles
Biogeochemistry
Fluxes
Geophysics
Indian Ocean
Indonesia
Indonesian throughflow
INSTANT
Marine
N:P ratio
nutrient flux
Nutrients
Ocean currents
Phosphates
primary production
Straits
Thermocline
Thermoclines
Thermohaline circulation
Upper ocean
title Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indonesian%20throughflow%20nutrient%20fluxes%20and%20their%20potential%20impact%20on%20Indian%20Ocean%20productivity&rft.jtitle=Geophysical%20research%20letters&rft.au=Ayers,%20Jennifer%20M.&rft.date=2014-07-28&rft.volume=41&rft.issue=14&rft.spage=5060&rft.epage=5067&rft.pages=5060-5067&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2014GL060593&rft_dat=%3Cproquest_cross%3E3545556301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642054441&rft_id=info:pmid/&rfr_iscdi=true