Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity
The Indonesian throughflow (ITF) is a chokepoint in the upper ocean thermohaline circulation, carrying Pacific waters through the strongly mixed Indonesian Seas and into the Indian Ocean. Yet the influence of the ITF on biogeochemical fluxes into the Indian Ocean is largely unknown. This study deter...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2014-07, Vol.41 (14), p.5060-5067 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5067 |
---|---|
container_issue | 14 |
container_start_page | 5060 |
container_title | Geophysical research letters |
container_volume | 41 |
creator | Ayers, Jennifer M. Strutton, Peter G. Coles, Victoria J. Hood, Raleigh R. Matear, Richard J. |
description | The Indonesian throughflow (ITF) is a chokepoint in the upper ocean thermohaline circulation, carrying Pacific waters through the strongly mixed Indonesian Seas and into the Indian Ocean. Yet the influence of the ITF on biogeochemical fluxes into the Indian Ocean is largely unknown. This study determines the first depth‐ and time‐resolved nitrate, phosphate, and silicate fluxes at the three main exit passages of the ITF: Lombok Strait, Ombai Strait, and Timor Passage. Nutrient flux as well as its variability with depth and time differs greatly between the passages. We estimate the effective flux of nutrients into the Indian Ocean by accounting for existing nutrients in the basin and find it largest in the upper 300–400 m. This suggests that the majority of ITF nutrient supply to the Indian Ocean is to thermocline waters, where it is likely to support new production and significantly impact Indian Ocean biogeochemical cycling.
Key Points
First quantification of Indonesian throughflow (ITF) nutrient fluxes
Shallow ITF nutricline drives large nutrient flux to Indian Ocean thermocline
ITF outflow large enough to support a significant amount of new production |
doi_str_mv | 10.1002/2014GL060593 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671411661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3545556301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4486-3f7b81ce5f84adaa0fa75713b9dbeedae7b487b0a415c496762b8f625aad0a5c3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhq0KpC6FGz8gUi8cCB0n_soRlXZbadVKiJYb1sRxWpesvdhO2_33eLUIIQ7gw9gaP-9jWUPIWwofKEBz0gBlyxUI4F17QBa0Y6xWAPIFWQB05dxIcUhepfQAAC20dEG-XfoheJsc-irfxzDf3Y9TeKr8nKOzPlfjND_bVKEfyr11sdqEXPoOp8qtN2hyFXxVJDvBtbGlbmIYZpPdo8vb1-TliFOyb37tR-Tm_OzL6UW9ul5enn5c1YYxJep2lL2ixvJRMRwQYUTJJW37buitHdDKninZAzLKDeuEFE2vRtFwxAGQm_aIvNt7y-M_ZpuyXrtk7DSht2FOmgpJGaVC0P-jXEhQioMq6PFf6EOYoy8fKULWAGeM7YTv95SJIaVoR72Jbo1xqyno3Vz0n3MpeLPHn9xkt_9k9fLzilMlRQnV-5BL2T7_DmH8roVsJddfr5Za3X7iF2VpaH8CJyyeDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642054441</pqid></control><display><type>article</type><title>Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity</title><source>Wiley-Blackwell Journals</source><source>Wiley Online Library</source><source>Wiley Online Library AGU Free Content</source><source>EZB Electronic Journals Library</source><creator>Ayers, Jennifer M. ; Strutton, Peter G. ; Coles, Victoria J. ; Hood, Raleigh R. ; Matear, Richard J.</creator><creatorcontrib>Ayers, Jennifer M. ; Strutton, Peter G. ; Coles, Victoria J. ; Hood, Raleigh R. ; Matear, Richard J.</creatorcontrib><description>The Indonesian throughflow (ITF) is a chokepoint in the upper ocean thermohaline circulation, carrying Pacific waters through the strongly mixed Indonesian Seas and into the Indian Ocean. Yet the influence of the ITF on biogeochemical fluxes into the Indian Ocean is largely unknown. This study determines the first depth‐ and time‐resolved nitrate, phosphate, and silicate fluxes at the three main exit passages of the ITF: Lombok Strait, Ombai Strait, and Timor Passage. Nutrient flux as well as its variability with depth and time differs greatly between the passages. We estimate the effective flux of nutrients into the Indian Ocean by accounting for existing nutrients in the basin and find it largest in the upper 300–400 m. This suggests that the majority of ITF nutrient supply to the Indian Ocean is to thermocline waters, where it is likely to support new production and significantly impact Indian Ocean biogeochemical cycling.
Key Points
First quantification of Indonesian throughflow (ITF) nutrient fluxes
Shallow ITF nutricline drives large nutrient flux to Indian Ocean thermocline
ITF outflow large enough to support a significant amount of new production</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2014GL060593</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Biogeochemical cycles ; Biogeochemistry ; Fluxes ; Geophysics ; Indian Ocean ; Indonesia ; Indonesian throughflow ; INSTANT ; Marine ; N:P ratio ; nutrient flux ; Nutrients ; Ocean currents ; Phosphates ; primary production ; Straits ; Thermocline ; Thermoclines ; Thermohaline circulation ; Upper ocean</subject><ispartof>Geophysical research letters, 2014-07, Vol.41 (14), p.5060-5067</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4486-3f7b81ce5f84adaa0fa75713b9dbeedae7b487b0a415c496762b8f625aad0a5c3</citedby><cites>FETCH-LOGICAL-c4486-3f7b81ce5f84adaa0fa75713b9dbeedae7b487b0a415c496762b8f625aad0a5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014GL060593$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014GL060593$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Ayers, Jennifer M.</creatorcontrib><creatorcontrib>Strutton, Peter G.</creatorcontrib><creatorcontrib>Coles, Victoria J.</creatorcontrib><creatorcontrib>Hood, Raleigh R.</creatorcontrib><creatorcontrib>Matear, Richard J.</creatorcontrib><title>Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>The Indonesian throughflow (ITF) is a chokepoint in the upper ocean thermohaline circulation, carrying Pacific waters through the strongly mixed Indonesian Seas and into the Indian Ocean. Yet the influence of the ITF on biogeochemical fluxes into the Indian Ocean is largely unknown. This study determines the first depth‐ and time‐resolved nitrate, phosphate, and silicate fluxes at the three main exit passages of the ITF: Lombok Strait, Ombai Strait, and Timor Passage. Nutrient flux as well as its variability with depth and time differs greatly between the passages. We estimate the effective flux of nutrients into the Indian Ocean by accounting for existing nutrients in the basin and find it largest in the upper 300–400 m. This suggests that the majority of ITF nutrient supply to the Indian Ocean is to thermocline waters, where it is likely to support new production and significantly impact Indian Ocean biogeochemical cycling.
Key Points
First quantification of Indonesian throughflow (ITF) nutrient fluxes
Shallow ITF nutricline drives large nutrient flux to Indian Ocean thermocline
ITF outflow large enough to support a significant amount of new production</description><subject>Biogeochemical cycles</subject><subject>Biogeochemistry</subject><subject>Fluxes</subject><subject>Geophysics</subject><subject>Indian Ocean</subject><subject>Indonesia</subject><subject>Indonesian throughflow</subject><subject>INSTANT</subject><subject>Marine</subject><subject>N:P ratio</subject><subject>nutrient flux</subject><subject>Nutrients</subject><subject>Ocean currents</subject><subject>Phosphates</subject><subject>primary production</subject><subject>Straits</subject><subject>Thermocline</subject><subject>Thermoclines</subject><subject>Thermohaline circulation</subject><subject>Upper ocean</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhq0KpC6FGz8gUi8cCB0n_soRlXZbadVKiJYb1sRxWpesvdhO2_33eLUIIQ7gw9gaP-9jWUPIWwofKEBz0gBlyxUI4F17QBa0Y6xWAPIFWQB05dxIcUhepfQAAC20dEG-XfoheJsc-irfxzDf3Y9TeKr8nKOzPlfjND_bVKEfyr11sdqEXPoOp8qtN2hyFXxVJDvBtbGlbmIYZpPdo8vb1-TliFOyb37tR-Tm_OzL6UW9ul5enn5c1YYxJep2lL2ixvJRMRwQYUTJJW37buitHdDKninZAzLKDeuEFE2vRtFwxAGQm_aIvNt7y-M_ZpuyXrtk7DSht2FOmgpJGaVC0P-jXEhQioMq6PFf6EOYoy8fKULWAGeM7YTv95SJIaVoR72Jbo1xqyno3Vz0n3MpeLPHn9xkt_9k9fLzilMlRQnV-5BL2T7_DmH8roVsJddfr5Za3X7iF2VpaH8CJyyeDw</recordid><startdate>20140728</startdate><enddate>20140728</enddate><creator>Ayers, Jennifer M.</creator><creator>Strutton, Peter G.</creator><creator>Coles, Victoria J.</creator><creator>Hood, Raleigh R.</creator><creator>Matear, Richard J.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>20140728</creationdate><title>Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity</title><author>Ayers, Jennifer M. ; Strutton, Peter G. ; Coles, Victoria J. ; Hood, Raleigh R. ; Matear, Richard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4486-3f7b81ce5f84adaa0fa75713b9dbeedae7b487b0a415c496762b8f625aad0a5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biogeochemical cycles</topic><topic>Biogeochemistry</topic><topic>Fluxes</topic><topic>Geophysics</topic><topic>Indian Ocean</topic><topic>Indonesia</topic><topic>Indonesian throughflow</topic><topic>INSTANT</topic><topic>Marine</topic><topic>N:P ratio</topic><topic>nutrient flux</topic><topic>Nutrients</topic><topic>Ocean currents</topic><topic>Phosphates</topic><topic>primary production</topic><topic>Straits</topic><topic>Thermocline</topic><topic>Thermoclines</topic><topic>Thermohaline circulation</topic><topic>Upper ocean</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayers, Jennifer M.</creatorcontrib><creatorcontrib>Strutton, Peter G.</creatorcontrib><creatorcontrib>Coles, Victoria J.</creatorcontrib><creatorcontrib>Hood, Raleigh R.</creatorcontrib><creatorcontrib>Matear, Richard J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayers, Jennifer M.</au><au>Strutton, Peter G.</au><au>Coles, Victoria J.</au><au>Hood, Raleigh R.</au><au>Matear, Richard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2014-07-28</date><risdate>2014</risdate><volume>41</volume><issue>14</issue><spage>5060</spage><epage>5067</epage><pages>5060-5067</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>The Indonesian throughflow (ITF) is a chokepoint in the upper ocean thermohaline circulation, carrying Pacific waters through the strongly mixed Indonesian Seas and into the Indian Ocean. Yet the influence of the ITF on biogeochemical fluxes into the Indian Ocean is largely unknown. This study determines the first depth‐ and time‐resolved nitrate, phosphate, and silicate fluxes at the three main exit passages of the ITF: Lombok Strait, Ombai Strait, and Timor Passage. Nutrient flux as well as its variability with depth and time differs greatly between the passages. We estimate the effective flux of nutrients into the Indian Ocean by accounting for existing nutrients in the basin and find it largest in the upper 300–400 m. This suggests that the majority of ITF nutrient supply to the Indian Ocean is to thermocline waters, where it is likely to support new production and significantly impact Indian Ocean biogeochemical cycling.
Key Points
First quantification of Indonesian throughflow (ITF) nutrient fluxes
Shallow ITF nutricline drives large nutrient flux to Indian Ocean thermocline
ITF outflow large enough to support a significant amount of new production</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014GL060593</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2014-07, Vol.41 (14), p.5060-5067 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671411661 |
source | Wiley-Blackwell Journals; Wiley Online Library; Wiley Online Library AGU Free Content; EZB Electronic Journals Library |
subjects | Biogeochemical cycles Biogeochemistry Fluxes Geophysics Indian Ocean Indonesia Indonesian throughflow INSTANT Marine N:P ratio nutrient flux Nutrients Ocean currents Phosphates primary production Straits Thermocline Thermoclines Thermohaline circulation Upper ocean |
title | Indonesian throughflow nutrient fluxes and their potential impact on Indian Ocean productivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indonesian%20throughflow%20nutrient%20fluxes%20and%20their%20potential%20impact%20on%20Indian%20Ocean%20productivity&rft.jtitle=Geophysical%20research%20letters&rft.au=Ayers,%20Jennifer%20M.&rft.date=2014-07-28&rft.volume=41&rft.issue=14&rft.spage=5060&rft.epage=5067&rft.pages=5060-5067&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2014GL060593&rft_dat=%3Cproquest_cross%3E3545556301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642054441&rft_id=info:pmid/&rfr_iscdi=true |