Light-emitting Si nanostructures formed in silica layers by irradiation with swift heavy ions

Thin SiO 2 layers were implanted with 140 keV Si ions to a dose of 10 17  cm −2 . The samples were irradiated with 130 Mev Xe ions in the dose range of 3×10 12 –10 14  cm −2 , either directly after implantation or after pre-annealing to form the embedded Si nanocrystals. In the as-implanted layers H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2010-03, Vol.98 (4), p.873-877
Hauptverfasser: Kachurin, G. A., Cherkova, S. G., Marin, D. V., Cherkov, A. G., Skuratov, V. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 877
container_issue 4
container_start_page 873
container_title Applied physics. A, Materials science & processing
container_volume 98
creator Kachurin, G. A.
Cherkova, S. G.
Marin, D. V.
Cherkov, A. G.
Skuratov, V. A.
description Thin SiO 2 layers were implanted with 140 keV Si ions to a dose of 10 17  cm −2 . The samples were irradiated with 130 Mev Xe ions in the dose range of 3×10 12 –10 14  cm −2 , either directly after implantation or after pre-annealing to form the embedded Si nanocrystals. In the as-implanted layers HREM revealed after Xe irradiations the 3–4 nm-size dark spots, whose number and size grew with increase in Xe dose. A photoluminescence band at 660–680 nm was observed in the layers with the intensity dependent on the Xe dose. It was found that passivation with hydrogen quenched that band and promoted emission at ∼780 nm, typical of Si nanocrystals. In spectra of pre-annealed layers strong ∼780 nm peak was observed initially. Under Xe bombardment its intensity fell, with subsequent appearance and growth of 660–680 nm band. The obtained results are interpreted as the emission at ∼660–680 nm belonging to the imperfect Si nanocrystals. It is concluded that electronic losses of Xe ions are mainly responsible for formation of new Si nanostructures in ion tracks, whereas elastic losses mainly introduce radiation defects, which quench the luminescence. Changes in the spectra with growth of Xe ion dose are accounted for by the difference in the diameters of Xe ion tracks and their displacement cascades.
doi_str_mv 10.1007/s00339-010-5561-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671410572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671410572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-6a7e7a98889c0162bd0a1c70b0a9036a39e28aff6a50905d146283289ebb6f573</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRi0EEqVwAHZesjGM7cSOl6jiT6rEAthiOYnTukqdYjug9DSchZORKqyZzSeN3jfSPIQuKVxTAHkTAThXBCiQPBeU7I_QjGacERAcjtEMVCZJwZU4RWcxbmCcjLEZel-61ToRu3UpOb_CLw5747uYQl-lPtiImy5sbY2dx9G1rjK4NYMNEZfDz7cLwdTOJNd5_OXSGscv1yS8tuZzwOMynqOTxrTRXvzlHL3d370uHsny-eFpcbskFWc0EWGklUYVRaEqoIKVNRhaSSjBKODCcGVZYZpGmBwU5DXNBCs4K5QtS9Hkks_R1XR3F7qP3sakty5Wtm2Nt10fNRWSZhRyyUaUTmgVuhiDbfQuuK0Jg6agDy715FKPLvXBpd6PHTZ14sj6lQ160_XBjx_9U_oFoKd5Kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671410572</pqid></control><display><type>article</type><title>Light-emitting Si nanostructures formed in silica layers by irradiation with swift heavy ions</title><source>Springer Nature - Complete Springer Journals</source><creator>Kachurin, G. A. ; Cherkova, S. G. ; Marin, D. V. ; Cherkov, A. G. ; Skuratov, V. A.</creator><creatorcontrib>Kachurin, G. A. ; Cherkova, S. G. ; Marin, D. V. ; Cherkov, A. G. ; Skuratov, V. A.</creatorcontrib><description>Thin SiO 2 layers were implanted with 140 keV Si ions to a dose of 10 17  cm −2 . The samples were irradiated with 130 Mev Xe ions in the dose range of 3×10 12 –10 14  cm −2 , either directly after implantation or after pre-annealing to form the embedded Si nanocrystals. In the as-implanted layers HREM revealed after Xe irradiations the 3–4 nm-size dark spots, whose number and size grew with increase in Xe dose. A photoluminescence band at 660–680 nm was observed in the layers with the intensity dependent on the Xe dose. It was found that passivation with hydrogen quenched that band and promoted emission at ∼780 nm, typical of Si nanocrystals. In spectra of pre-annealed layers strong ∼780 nm peak was observed initially. Under Xe bombardment its intensity fell, with subsequent appearance and growth of 660–680 nm band. The obtained results are interpreted as the emission at ∼660–680 nm belonging to the imperfect Si nanocrystals. It is concluded that electronic losses of Xe ions are mainly responsible for formation of new Si nanostructures in ion tracks, whereas elastic losses mainly introduce radiation defects, which quench the luminescence. Changes in the spectra with growth of Xe ion dose are accounted for by the difference in the diameters of Xe ion tracks and their displacement cascades.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-010-5561-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Characterization and Evaluation of Materials ; Condensed Matter Physics ; Emission ; Irradiation ; Machines ; Manufacturing ; Nanocrystals ; Nanomaterials ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Silicon ; Silicon dioxide ; Spectra ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2010-03, Vol.98 (4), p.873-877</ispartof><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-6a7e7a98889c0162bd0a1c70b0a9036a39e28aff6a50905d146283289ebb6f573</citedby><cites>FETCH-LOGICAL-c321t-6a7e7a98889c0162bd0a1c70b0a9036a39e28aff6a50905d146283289ebb6f573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-010-5561-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-010-5561-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kachurin, G. A.</creatorcontrib><creatorcontrib>Cherkova, S. G.</creatorcontrib><creatorcontrib>Marin, D. V.</creatorcontrib><creatorcontrib>Cherkov, A. G.</creatorcontrib><creatorcontrib>Skuratov, V. A.</creatorcontrib><title>Light-emitting Si nanostructures formed in silica layers by irradiation with swift heavy ions</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Thin SiO 2 layers were implanted with 140 keV Si ions to a dose of 10 17  cm −2 . The samples were irradiated with 130 Mev Xe ions in the dose range of 3×10 12 –10 14  cm −2 , either directly after implantation or after pre-annealing to form the embedded Si nanocrystals. In the as-implanted layers HREM revealed after Xe irradiations the 3–4 nm-size dark spots, whose number and size grew with increase in Xe dose. A photoluminescence band at 660–680 nm was observed in the layers with the intensity dependent on the Xe dose. It was found that passivation with hydrogen quenched that band and promoted emission at ∼780 nm, typical of Si nanocrystals. In spectra of pre-annealed layers strong ∼780 nm peak was observed initially. Under Xe bombardment its intensity fell, with subsequent appearance and growth of 660–680 nm band. The obtained results are interpreted as the emission at ∼660–680 nm belonging to the imperfect Si nanocrystals. It is concluded that electronic losses of Xe ions are mainly responsible for formation of new Si nanostructures in ion tracks, whereas elastic losses mainly introduce radiation defects, which quench the luminescence. Changes in the spectra with growth of Xe ion dose are accounted for by the difference in the diameters of Xe ion tracks and their displacement cascades.</description><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Emission</subject><subject>Irradiation</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Silicon</subject><subject>Silicon dioxide</subject><subject>Spectra</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRi0EEqVwAHZesjGM7cSOl6jiT6rEAthiOYnTukqdYjug9DSchZORKqyZzSeN3jfSPIQuKVxTAHkTAThXBCiQPBeU7I_QjGacERAcjtEMVCZJwZU4RWcxbmCcjLEZel-61ToRu3UpOb_CLw5747uYQl-lPtiImy5sbY2dx9G1rjK4NYMNEZfDz7cLwdTOJNd5_OXSGscv1yS8tuZzwOMynqOTxrTRXvzlHL3d370uHsny-eFpcbskFWc0EWGklUYVRaEqoIKVNRhaSSjBKODCcGVZYZpGmBwU5DXNBCs4K5QtS9Hkks_R1XR3F7qP3sakty5Wtm2Nt10fNRWSZhRyyUaUTmgVuhiDbfQuuK0Jg6agDy715FKPLvXBpd6PHTZ14sj6lQ160_XBjx_9U_oFoKd5Kg</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Kachurin, G. A.</creator><creator>Cherkova, S. G.</creator><creator>Marin, D. V.</creator><creator>Cherkov, A. G.</creator><creator>Skuratov, V. A.</creator><general>Springer-Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100301</creationdate><title>Light-emitting Si nanostructures formed in silica layers by irradiation with swift heavy ions</title><author>Kachurin, G. A. ; Cherkova, S. G. ; Marin, D. V. ; Cherkov, A. G. ; Skuratov, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-6a7e7a98889c0162bd0a1c70b0a9036a39e28aff6a50905d146283289ebb6f573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Emission</topic><topic>Irradiation</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Silicon</topic><topic>Silicon dioxide</topic><topic>Spectra</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kachurin, G. A.</creatorcontrib><creatorcontrib>Cherkova, S. G.</creatorcontrib><creatorcontrib>Marin, D. V.</creatorcontrib><creatorcontrib>Cherkov, A. G.</creatorcontrib><creatorcontrib>Skuratov, V. A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kachurin, G. A.</au><au>Cherkova, S. G.</au><au>Marin, D. V.</au><au>Cherkov, A. G.</au><au>Skuratov, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light-emitting Si nanostructures formed in silica layers by irradiation with swift heavy ions</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>98</volume><issue>4</issue><spage>873</spage><epage>877</epage><pages>873-877</pages><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Thin SiO 2 layers were implanted with 140 keV Si ions to a dose of 10 17  cm −2 . The samples were irradiated with 130 Mev Xe ions in the dose range of 3×10 12 –10 14  cm −2 , either directly after implantation or after pre-annealing to form the embedded Si nanocrystals. In the as-implanted layers HREM revealed after Xe irradiations the 3–4 nm-size dark spots, whose number and size grew with increase in Xe dose. A photoluminescence band at 660–680 nm was observed in the layers with the intensity dependent on the Xe dose. It was found that passivation with hydrogen quenched that band and promoted emission at ∼780 nm, typical of Si nanocrystals. In spectra of pre-annealed layers strong ∼780 nm peak was observed initially. Under Xe bombardment its intensity fell, with subsequent appearance and growth of 660–680 nm band. The obtained results are interpreted as the emission at ∼660–680 nm belonging to the imperfect Si nanocrystals. It is concluded that electronic losses of Xe ions are mainly responsible for formation of new Si nanostructures in ion tracks, whereas elastic losses mainly introduce radiation defects, which quench the luminescence. Changes in the spectra with growth of Xe ion dose are accounted for by the difference in the diameters of Xe ion tracks and their displacement cascades.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00339-010-5561-z</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2010-03, Vol.98 (4), p.873-877
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_miscellaneous_1671410572
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Condensed Matter Physics
Emission
Irradiation
Machines
Manufacturing
Nanocrystals
Nanomaterials
Nanostructure
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Silicon
Silicon dioxide
Spectra
Surfaces and Interfaces
Thin Films
title Light-emitting Si nanostructures formed in silica layers by irradiation with swift heavy ions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A13%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light-emitting%20Si%20nanostructures%20formed%20in%20silica%20layers%20by%C2%A0irradiation%20with%20swift%20heavy%20ions&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Kachurin,%20G.%20A.&rft.date=2010-03-01&rft.volume=98&rft.issue=4&rft.spage=873&rft.epage=877&rft.pages=873-877&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-010-5561-z&rft_dat=%3Cproquest_cross%3E1671410572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671410572&rft_id=info:pmid/&rfr_iscdi=true