Investigation of mechanical, electrical, and thermal properties of a Zn–1.26 wt% Al alloy

Zn–1.26 wt% Al alloy was directionally solidified upward with a constant growth rate ( V  = 16.6 μm/s) in a wide range of temperature gradients (1.94–5.15 K/mm) and with a constant temperature gradient ( G  = 5.15 K/mm) in a wide range of growth rates (8.3–500 μm/s) with a Bridgman-type directional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2011-03, Vol.46 (5), p.1414-1423
Hauptverfasser: Cadlrli, Emin, Sahin, Mevlut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1423
container_issue 5
container_start_page 1414
container_title Journal of materials science
container_volume 46
creator Cadlrli, Emin
Sahin, Mevlut
description Zn–1.26 wt% Al alloy was directionally solidified upward with a constant growth rate ( V  = 16.6 μm/s) in a wide range of temperature gradients (1.94–5.15 K/mm) and with a constant temperature gradient ( G  = 5.15 K/mm) in a wide range of growth rates (8.3–500 μm/s) with a Bridgman-type directional solidification furnace. The microhardness (HV) and tensile strength (σ) of alloy were measured from directionally solidified samples. The dependency of the microhardness, tensile strength for directionally solidified Zn–1.26 wt% Al alloy on the solidification parameters ( G , V ) and microstructure parameters (λ 1 , λ 2 ) were investigated and the relationships between them were experimentally obtained using regression analysis. According to present results, the microhardness and tensile strength of directionally solidified Zn–1.26 wt% Al alloy increase with increasing solidification processing parameters and decrease with the microstructure parameters. Variations of electrical resistivity (ρ) with the temperature in the range of 300–650 K were also measured using a standard dc four-point probe technique for cast samples. The enthalpy of fusion and specific heat for same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid.
doi_str_mv 10.1007/s10853-010-4936-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671408893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A365071599</galeid><sourcerecordid>A365071599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-ec5f91e1c9bcd143648bbf736edf776178f218cd42479b45798eb9acc86a6c533</originalsourceid><addsrcrecordid>eNp1kcuKFDEUhgtRsB19AHcFIihYbW6Vy7IZvDQMCF42ugip1KmeDKmkTdKjMyvfwTecJ5k0JcgIkkVC-L7Df_ib5ilGa4yQeJ0xkj3tEEYdU5R31_eaFe4F7ZhE9H6zQoiQjjCOHzaPcr5ACPWC4FXzbRsuIRe3M8XF0MapncGem-Cs8a9a8GBLWt4mjG05hzQb3-5T3EMqDvLRMO3XcPPrN14T3v4oz9uNb4338epx82AyPsOTP_dJ8-Xtm8-n77uzD--2p5uzzjJCSge2nxQGbNVgR8woZ3IYJkE5jJMQHAs5ESztyAgTamC9UBIGZayV3HDbU3rSvFjm1ljfD3UbPbtswXsTIB6yxlxghqRUR_TZP-hFPKRQ02lCeiWooIxXar1QO-NBuzDFkoytZ4TZ2RhgcvV_Q3mPBO6VqsLLO0JlCvwsO3PIWW8_fbzL4oW1KeacYNL75GaTrjRG-tilXrrUtUt97FJfV4csTq5s2EH6G_v_0i1haaAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259737346</pqid></control><display><type>article</type><title>Investigation of mechanical, electrical, and thermal properties of a Zn–1.26 wt% Al alloy</title><source>SpringerLink Journals</source><creator>Cadlrli, Emin ; Sahin, Mevlut</creator><creatorcontrib>Cadlrli, Emin ; Sahin, Mevlut</creatorcontrib><description>Zn–1.26 wt% Al alloy was directionally solidified upward with a constant growth rate ( V  = 16.6 μm/s) in a wide range of temperature gradients (1.94–5.15 K/mm) and with a constant temperature gradient ( G  = 5.15 K/mm) in a wide range of growth rates (8.3–500 μm/s) with a Bridgman-type directional solidification furnace. The microhardness (HV) and tensile strength (σ) of alloy were measured from directionally solidified samples. The dependency of the microhardness, tensile strength for directionally solidified Zn–1.26 wt% Al alloy on the solidification parameters ( G , V ) and microstructure parameters (λ 1 , λ 2 ) were investigated and the relationships between them were experimentally obtained using regression analysis. According to present results, the microhardness and tensile strength of directionally solidified Zn–1.26 wt% Al alloy increase with increasing solidification processing parameters and decrease with the microstructure parameters. Variations of electrical resistivity (ρ) with the temperature in the range of 300–650 K were also measured using a standard dc four-point probe technique for cast samples. The enthalpy of fusion and specific heat for same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-010-4936-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Aluminum base alloys ; Analysis ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Dependence ; Directional solidification ; Enthalpy ; Hardness ; Investigations ; Materials Science ; Mechanical properties ; Microhardness ; Microstructure ; Polymer Sciences ; Process parameters ; Regression analysis ; Solid Mechanics ; Solidification ; Specialty metals industry ; Temperature gradient ; Temperature gradients ; Tensile strength ; Thermal properties ; Thermodynamic properties ; Toy industry ; Zinc base alloys ; Zinc compounds</subject><ispartof>Journal of materials science, 2011-03, Vol.46 (5), p.1414-1423</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>COPYRIGHT 2011 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-ec5f91e1c9bcd143648bbf736edf776178f218cd42479b45798eb9acc86a6c533</citedby><cites>FETCH-LOGICAL-c422t-ec5f91e1c9bcd143648bbf736edf776178f218cd42479b45798eb9acc86a6c533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-010-4936-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-010-4936-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Cadlrli, Emin</creatorcontrib><creatorcontrib>Sahin, Mevlut</creatorcontrib><title>Investigation of mechanical, electrical, and thermal properties of a Zn–1.26 wt% Al alloy</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Zn–1.26 wt% Al alloy was directionally solidified upward with a constant growth rate ( V  = 16.6 μm/s) in a wide range of temperature gradients (1.94–5.15 K/mm) and with a constant temperature gradient ( G  = 5.15 K/mm) in a wide range of growth rates (8.3–500 μm/s) with a Bridgman-type directional solidification furnace. The microhardness (HV) and tensile strength (σ) of alloy were measured from directionally solidified samples. The dependency of the microhardness, tensile strength for directionally solidified Zn–1.26 wt% Al alloy on the solidification parameters ( G , V ) and microstructure parameters (λ 1 , λ 2 ) were investigated and the relationships between them were experimentally obtained using regression analysis. According to present results, the microhardness and tensile strength of directionally solidified Zn–1.26 wt% Al alloy increase with increasing solidification processing parameters and decrease with the microstructure parameters. Variations of electrical resistivity (ρ) with the temperature in the range of 300–650 K were also measured using a standard dc four-point probe technique for cast samples. The enthalpy of fusion and specific heat for same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid.</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Analysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Dependence</subject><subject>Directional solidification</subject><subject>Enthalpy</subject><subject>Hardness</subject><subject>Investigations</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Polymer Sciences</subject><subject>Process parameters</subject><subject>Regression analysis</subject><subject>Solid Mechanics</subject><subject>Solidification</subject><subject>Specialty metals industry</subject><subject>Temperature gradient</subject><subject>Temperature gradients</subject><subject>Tensile strength</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Toy industry</subject><subject>Zinc base alloys</subject><subject>Zinc compounds</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kcuKFDEUhgtRsB19AHcFIihYbW6Vy7IZvDQMCF42ugip1KmeDKmkTdKjMyvfwTecJ5k0JcgIkkVC-L7Df_ib5ilGa4yQeJ0xkj3tEEYdU5R31_eaFe4F7ZhE9H6zQoiQjjCOHzaPcr5ACPWC4FXzbRsuIRe3M8XF0MapncGem-Cs8a9a8GBLWt4mjG05hzQb3-5T3EMqDvLRMO3XcPPrN14T3v4oz9uNb4338epx82AyPsOTP_dJ8-Xtm8-n77uzD--2p5uzzjJCSge2nxQGbNVgR8woZ3IYJkE5jJMQHAs5ESztyAgTamC9UBIGZayV3HDbU3rSvFjm1ljfD3UbPbtswXsTIB6yxlxghqRUR_TZP-hFPKRQ02lCeiWooIxXar1QO-NBuzDFkoytZ4TZ2RhgcvV_Q3mPBO6VqsLLO0JlCvwsO3PIWW8_fbzL4oW1KeacYNL75GaTrjRG-tilXrrUtUt97FJfV4csTq5s2EH6G_v_0i1haaAE</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Cadlrli, Emin</creator><creator>Sahin, Mevlut</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110301</creationdate><title>Investigation of mechanical, electrical, and thermal properties of a Zn–1.26 wt% Al alloy</title><author>Cadlrli, Emin ; Sahin, Mevlut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-ec5f91e1c9bcd143648bbf736edf776178f218cd42479b45798eb9acc86a6c533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Analysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Dependence</topic><topic>Directional solidification</topic><topic>Enthalpy</topic><topic>Hardness</topic><topic>Investigations</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Polymer Sciences</topic><topic>Process parameters</topic><topic>Regression analysis</topic><topic>Solid Mechanics</topic><topic>Solidification</topic><topic>Specialty metals industry</topic><topic>Temperature gradient</topic><topic>Temperature gradients</topic><topic>Tensile strength</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Toy industry</topic><topic>Zinc base alloys</topic><topic>Zinc compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cadlrli, Emin</creatorcontrib><creatorcontrib>Sahin, Mevlut</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cadlrli, Emin</au><au>Sahin, Mevlut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of mechanical, electrical, and thermal properties of a Zn–1.26 wt% Al alloy</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2011-03-01</date><risdate>2011</risdate><volume>46</volume><issue>5</issue><spage>1414</spage><epage>1423</epage><pages>1414-1423</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Zn–1.26 wt% Al alloy was directionally solidified upward with a constant growth rate ( V  = 16.6 μm/s) in a wide range of temperature gradients (1.94–5.15 K/mm) and with a constant temperature gradient ( G  = 5.15 K/mm) in a wide range of growth rates (8.3–500 μm/s) with a Bridgman-type directional solidification furnace. The microhardness (HV) and tensile strength (σ) of alloy were measured from directionally solidified samples. The dependency of the microhardness, tensile strength for directionally solidified Zn–1.26 wt% Al alloy on the solidification parameters ( G , V ) and microstructure parameters (λ 1 , λ 2 ) were investigated and the relationships between them were experimentally obtained using regression analysis. According to present results, the microhardness and tensile strength of directionally solidified Zn–1.26 wt% Al alloy increase with increasing solidification processing parameters and decrease with the microstructure parameters. Variations of electrical resistivity (ρ) with the temperature in the range of 300–650 K were also measured using a standard dc four-point probe technique for cast samples. The enthalpy of fusion and specific heat for same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-010-4936-z</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2011-03, Vol.46 (5), p.1414-1423
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_1671408893
source SpringerLink Journals
subjects Alloys
Aluminum base alloys
Analysis
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Dependence
Directional solidification
Enthalpy
Hardness
Investigations
Materials Science
Mechanical properties
Microhardness
Microstructure
Polymer Sciences
Process parameters
Regression analysis
Solid Mechanics
Solidification
Specialty metals industry
Temperature gradient
Temperature gradients
Tensile strength
Thermal properties
Thermodynamic properties
Toy industry
Zinc base alloys
Zinc compounds
title Investigation of mechanical, electrical, and thermal properties of a Zn–1.26 wt% Al alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20mechanical,%20electrical,%20and%20thermal%20properties%20of%20a%20Zn%E2%80%931.26%20wt%25%20Al%20alloy&rft.jtitle=Journal%20of%20materials%20science&rft.au=Cadlrli,%20Emin&rft.date=2011-03-01&rft.volume=46&rft.issue=5&rft.spage=1414&rft.epage=1423&rft.pages=1414-1423&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-010-4936-z&rft_dat=%3Cgale_proqu%3EA365071599%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259737346&rft_id=info:pmid/&rft_galeid=A365071599&rfr_iscdi=true