Investigation of mechanical, electrical, and thermal properties of a Zn–1.26 wt% Al alloy
Zn–1.26 wt% Al alloy was directionally solidified upward with a constant growth rate ( V = 16.6 μm/s) in a wide range of temperature gradients (1.94–5.15 K/mm) and with a constant temperature gradient ( G = 5.15 K/mm) in a wide range of growth rates (8.3–500 μm/s) with a Bridgman-type directional...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2011-03, Vol.46 (5), p.1414-1423 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1423 |
---|---|
container_issue | 5 |
container_start_page | 1414 |
container_title | Journal of materials science |
container_volume | 46 |
creator | Cadlrli, Emin Sahin, Mevlut |
description | Zn–1.26 wt% Al alloy was directionally solidified upward with a constant growth rate (
V
= 16.6 μm/s) in a wide range of temperature gradients (1.94–5.15 K/mm) and with a constant temperature gradient (
G
= 5.15 K/mm) in a wide range of growth rates (8.3–500 μm/s) with a Bridgman-type directional solidification furnace. The microhardness (HV) and tensile strength (σ) of alloy were measured from directionally solidified samples. The dependency of the microhardness, tensile strength for directionally solidified Zn–1.26 wt% Al alloy on the solidification parameters (
G
,
V
) and microstructure parameters (λ
1
, λ
2
) were investigated and the relationships between them were experimentally obtained using regression analysis. According to present results, the microhardness and tensile strength of directionally solidified Zn–1.26 wt% Al alloy increase with increasing solidification processing parameters and decrease with the microstructure parameters. Variations of electrical resistivity (ρ) with the temperature in the range of 300–650 K were also measured using a standard dc four-point probe technique for cast samples. The enthalpy of fusion and specific heat for same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid. |
doi_str_mv | 10.1007/s10853-010-4936-z |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671408893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A365071599</galeid><sourcerecordid>A365071599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-ec5f91e1c9bcd143648bbf736edf776178f218cd42479b45798eb9acc86a6c533</originalsourceid><addsrcrecordid>eNp1kcuKFDEUhgtRsB19AHcFIihYbW6Vy7IZvDQMCF42ugip1KmeDKmkTdKjMyvfwTecJ5k0JcgIkkVC-L7Df_ib5ilGa4yQeJ0xkj3tEEYdU5R31_eaFe4F7ZhE9H6zQoiQjjCOHzaPcr5ACPWC4FXzbRsuIRe3M8XF0MapncGem-Cs8a9a8GBLWt4mjG05hzQb3-5T3EMqDvLRMO3XcPPrN14T3v4oz9uNb4338epx82AyPsOTP_dJ8-Xtm8-n77uzD--2p5uzzjJCSge2nxQGbNVgR8woZ3IYJkE5jJMQHAs5ESztyAgTamC9UBIGZayV3HDbU3rSvFjm1ljfD3UbPbtswXsTIB6yxlxghqRUR_TZP-hFPKRQ02lCeiWooIxXar1QO-NBuzDFkoytZ4TZ2RhgcvV_Q3mPBO6VqsLLO0JlCvwsO3PIWW8_fbzL4oW1KeacYNL75GaTrjRG-tilXrrUtUt97FJfV4csTq5s2EH6G_v_0i1haaAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259737346</pqid></control><display><type>article</type><title>Investigation of mechanical, electrical, and thermal properties of a Zn–1.26 wt% Al alloy</title><source>SpringerLink Journals</source><creator>Cadlrli, Emin ; Sahin, Mevlut</creator><creatorcontrib>Cadlrli, Emin ; Sahin, Mevlut</creatorcontrib><description>Zn–1.26 wt% Al alloy was directionally solidified upward with a constant growth rate (
V
= 16.6 μm/s) in a wide range of temperature gradients (1.94–5.15 K/mm) and with a constant temperature gradient (
G
= 5.15 K/mm) in a wide range of growth rates (8.3–500 μm/s) with a Bridgman-type directional solidification furnace. The microhardness (HV) and tensile strength (σ) of alloy were measured from directionally solidified samples. The dependency of the microhardness, tensile strength for directionally solidified Zn–1.26 wt% Al alloy on the solidification parameters (
G
,
V
) and microstructure parameters (λ
1
, λ
2
) were investigated and the relationships between them were experimentally obtained using regression analysis. According to present results, the microhardness and tensile strength of directionally solidified Zn–1.26 wt% Al alloy increase with increasing solidification processing parameters and decrease with the microstructure parameters. Variations of electrical resistivity (ρ) with the temperature in the range of 300–650 K were also measured using a standard dc four-point probe technique for cast samples. The enthalpy of fusion and specific heat for same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-010-4936-z</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Aluminum base alloys ; Analysis ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Dependence ; Directional solidification ; Enthalpy ; Hardness ; Investigations ; Materials Science ; Mechanical properties ; Microhardness ; Microstructure ; Polymer Sciences ; Process parameters ; Regression analysis ; Solid Mechanics ; Solidification ; Specialty metals industry ; Temperature gradient ; Temperature gradients ; Tensile strength ; Thermal properties ; Thermodynamic properties ; Toy industry ; Zinc base alloys ; Zinc compounds</subject><ispartof>Journal of materials science, 2011-03, Vol.46 (5), p.1414-1423</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>COPYRIGHT 2011 Springer</rights><rights>Journal of Materials Science is a copyright of Springer, (2010). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-ec5f91e1c9bcd143648bbf736edf776178f218cd42479b45798eb9acc86a6c533</citedby><cites>FETCH-LOGICAL-c422t-ec5f91e1c9bcd143648bbf736edf776178f218cd42479b45798eb9acc86a6c533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-010-4936-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-010-4936-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Cadlrli, Emin</creatorcontrib><creatorcontrib>Sahin, Mevlut</creatorcontrib><title>Investigation of mechanical, electrical, and thermal properties of a Zn–1.26 wt% Al alloy</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Zn–1.26 wt% Al alloy was directionally solidified upward with a constant growth rate (
V
= 16.6 μm/s) in a wide range of temperature gradients (1.94–5.15 K/mm) and with a constant temperature gradient (
G
= 5.15 K/mm) in a wide range of growth rates (8.3–500 μm/s) with a Bridgman-type directional solidification furnace. The microhardness (HV) and tensile strength (σ) of alloy were measured from directionally solidified samples. The dependency of the microhardness, tensile strength for directionally solidified Zn–1.26 wt% Al alloy on the solidification parameters (
G
,
V
) and microstructure parameters (λ
1
, λ
2
) were investigated and the relationships between them were experimentally obtained using regression analysis. According to present results, the microhardness and tensile strength of directionally solidified Zn–1.26 wt% Al alloy increase with increasing solidification processing parameters and decrease with the microstructure parameters. Variations of electrical resistivity (ρ) with the temperature in the range of 300–650 K were also measured using a standard dc four-point probe technique for cast samples. The enthalpy of fusion and specific heat for same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid.</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Analysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Dependence</subject><subject>Directional solidification</subject><subject>Enthalpy</subject><subject>Hardness</subject><subject>Investigations</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Polymer Sciences</subject><subject>Process parameters</subject><subject>Regression analysis</subject><subject>Solid Mechanics</subject><subject>Solidification</subject><subject>Specialty metals industry</subject><subject>Temperature gradient</subject><subject>Temperature gradients</subject><subject>Tensile strength</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Toy industry</subject><subject>Zinc base alloys</subject><subject>Zinc compounds</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kcuKFDEUhgtRsB19AHcFIihYbW6Vy7IZvDQMCF42ugip1KmeDKmkTdKjMyvfwTecJ5k0JcgIkkVC-L7Df_ib5ilGa4yQeJ0xkj3tEEYdU5R31_eaFe4F7ZhE9H6zQoiQjjCOHzaPcr5ACPWC4FXzbRsuIRe3M8XF0MapncGem-Cs8a9a8GBLWt4mjG05hzQb3-5T3EMqDvLRMO3XcPPrN14T3v4oz9uNb4338epx82AyPsOTP_dJ8-Xtm8-n77uzD--2p5uzzjJCSge2nxQGbNVgR8woZ3IYJkE5jJMQHAs5ESztyAgTamC9UBIGZayV3HDbU3rSvFjm1ljfD3UbPbtswXsTIB6yxlxghqRUR_TZP-hFPKRQ02lCeiWooIxXar1QO-NBuzDFkoytZ4TZ2RhgcvV_Q3mPBO6VqsLLO0JlCvwsO3PIWW8_fbzL4oW1KeacYNL75GaTrjRG-tilXrrUtUt97FJfV4csTq5s2EH6G_v_0i1haaAE</recordid><startdate>20110301</startdate><enddate>20110301</enddate><creator>Cadlrli, Emin</creator><creator>Sahin, Mevlut</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20110301</creationdate><title>Investigation of mechanical, electrical, and thermal properties of a Zn–1.26 wt% Al alloy</title><author>Cadlrli, Emin ; Sahin, Mevlut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-ec5f91e1c9bcd143648bbf736edf776178f218cd42479b45798eb9acc86a6c533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Analysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Dependence</topic><topic>Directional solidification</topic><topic>Enthalpy</topic><topic>Hardness</topic><topic>Investigations</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Polymer Sciences</topic><topic>Process parameters</topic><topic>Regression analysis</topic><topic>Solid Mechanics</topic><topic>Solidification</topic><topic>Specialty metals industry</topic><topic>Temperature gradient</topic><topic>Temperature gradients</topic><topic>Tensile strength</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Toy industry</topic><topic>Zinc base alloys</topic><topic>Zinc compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cadlrli, Emin</creatorcontrib><creatorcontrib>Sahin, Mevlut</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cadlrli, Emin</au><au>Sahin, Mevlut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of mechanical, electrical, and thermal properties of a Zn–1.26 wt% Al alloy</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2011-03-01</date><risdate>2011</risdate><volume>46</volume><issue>5</issue><spage>1414</spage><epage>1423</epage><pages>1414-1423</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Zn–1.26 wt% Al alloy was directionally solidified upward with a constant growth rate (
V
= 16.6 μm/s) in a wide range of temperature gradients (1.94–5.15 K/mm) and with a constant temperature gradient (
G
= 5.15 K/mm) in a wide range of growth rates (8.3–500 μm/s) with a Bridgman-type directional solidification furnace. The microhardness (HV) and tensile strength (σ) of alloy were measured from directionally solidified samples. The dependency of the microhardness, tensile strength for directionally solidified Zn–1.26 wt% Al alloy on the solidification parameters (
G
,
V
) and microstructure parameters (λ
1
, λ
2
) were investigated and the relationships between them were experimentally obtained using regression analysis. According to present results, the microhardness and tensile strength of directionally solidified Zn–1.26 wt% Al alloy increase with increasing solidification processing parameters and decrease with the microstructure parameters. Variations of electrical resistivity (ρ) with the temperature in the range of 300–650 K were also measured using a standard dc four-point probe technique for cast samples. The enthalpy of fusion and specific heat for same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10853-010-4936-z</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2011-03, Vol.46 (5), p.1414-1423 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671408893 |
source | SpringerLink Journals |
subjects | Alloys Aluminum base alloys Analysis Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Dependence Directional solidification Enthalpy Hardness Investigations Materials Science Mechanical properties Microhardness Microstructure Polymer Sciences Process parameters Regression analysis Solid Mechanics Solidification Specialty metals industry Temperature gradient Temperature gradients Tensile strength Thermal properties Thermodynamic properties Toy industry Zinc base alloys Zinc compounds |
title | Investigation of mechanical, electrical, and thermal properties of a Zn–1.26 wt% Al alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20mechanical,%20electrical,%20and%20thermal%20properties%20of%20a%20Zn%E2%80%931.26%20wt%25%20Al%20alloy&rft.jtitle=Journal%20of%20materials%20science&rft.au=Cadlrli,%20Emin&rft.date=2011-03-01&rft.volume=46&rft.issue=5&rft.spage=1414&rft.epage=1423&rft.pages=1414-1423&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-010-4936-z&rft_dat=%3Cgale_proqu%3EA365071599%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259737346&rft_id=info:pmid/&rft_galeid=A365071599&rfr_iscdi=true |