Method of flow graph simplification for the 16-point discrete Fourier transform
An efficient method for the realization of the paired algorithm for calculation of the one-dimensional (1-D) discrete Fourier transform (DFT), by simplifying the signal-flow graph of the transform, is described. The signal-flow graph is modified by separating the calculation for real and imaginary p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2005-01, Vol.53 (1), p.384-389 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 389 |
---|---|
container_issue | 1 |
container_start_page | 384 |
container_title | IEEE transactions on signal processing |
container_volume | 53 |
creator | Grigoryan, A.M. Bhamidipati, V.S. |
description | An efficient method for the realization of the paired algorithm for calculation of the one-dimensional (1-D) discrete Fourier transform (DFT), by simplifying the signal-flow graph of the transform, is described. The signal-flow graph is modified by separating the calculation for real and imaginary parts of all inputs and outputs in the signal-flow graph and using properties of the transform. The examples for calculation of the eight- and 16-point DFTs are considered in detail. The calculation of the 16-point DFT of real data requires 12 real multiplications and 58 additions. Two multiplications and 20 additions are used for the eight-point DFT. |
doi_str_mv | 10.1109/TSP.2004.838970 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671408305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1369682</ieee_id><sourcerecordid>2361964061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-88748f441bffb4e31885e5e0de47ce7dd650774c63c791048c7b9178fa4e127e3</originalsourceid><addsrcrecordid>eNp9kUFrGzEQhUVpoKmbcw69iEJLLutIK600eyymTgoOCSSB3ISsHdUK69VWWlPy7yNjQ6CHnGZgvnnMm0fIOWdzzll7-XB_N68Zk3MQ0Gr2gZzyVvKKSa0-lp41ompAP30in3N-ZoxL2apTcnuD0yZ2NHrq-_iP_kl23NActmMffHB2CnGgPiY6bZByVY0xDBPtQnYJJ6TLuEsByzTZIRds-4WceNtnPDvWGXlc_npYXFer26vfi5-rygmopwpAS_BS8rX3a4mCAzTYIOtQaoe661TDtJZOCadbziQ4vW65Bm8l8lqjmJEfB90xxb87zJPZlpuw7-2AcZdNDaxRALKAF--CXGkuGYjynxn59h_6XOwNxYYB1XJZK7XXuzxALsWcE3ozprC16cVwZvZBmBKE2QdhDkGUje9HWZud7X15lQv5ba2Iai1U4b4euICIb2OhWgW1eAXvXo-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869142664</pqid></control><display><type>article</type><title>Method of flow graph simplification for the 16-point discrete Fourier transform</title><source>IEEE Electronic Library Online</source><creator>Grigoryan, A.M. ; Bhamidipati, V.S.</creator><creatorcontrib>Grigoryan, A.M. ; Bhamidipati, V.S.</creatorcontrib><description>An efficient method for the realization of the paired algorithm for calculation of the one-dimensional (1-D) discrete Fourier transform (DFT), by simplifying the signal-flow graph of the transform, is described. The signal-flow graph is modified by separating the calculation for real and imaginary parts of all inputs and outputs in the signal-flow graph and using properties of the transform. The examples for calculation of the eight- and 16-point DFTs are considered in detail. The calculation of the 16-point DFT of real data requires 12 real multiplications and 58 additions. Two multiplications and 20 additions are used for the eight-point DFT.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2004.838970</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Chaos ; Chaotic communication ; Convergence ; Discrete Fourier transforms ; Exact sciences and technology ; Fast Fourier transform ; Flow graphs ; Fourier transforms ; Graphs ; Information, signal and communications theory ; Mathematical analysis ; Mathematical methods ; Maximum likelihood estimation ; Multiplication ; paired function and transform ; Signal generators ; Signal processing ; Signal processing algorithms ; Simplification ; Telecommunications and information theory ; Transforms</subject><ispartof>IEEE transactions on signal processing, 2005-01, Vol.53 (1), p.384-389</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-88748f441bffb4e31885e5e0de47ce7dd650774c63c791048c7b9178fa4e127e3</citedby><cites>FETCH-LOGICAL-c382t-88748f441bffb4e31885e5e0de47ce7dd650774c63c791048c7b9178fa4e127e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1369682$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1369682$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16437736$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grigoryan, A.M.</creatorcontrib><creatorcontrib>Bhamidipati, V.S.</creatorcontrib><title>Method of flow graph simplification for the 16-point discrete Fourier transform</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>An efficient method for the realization of the paired algorithm for calculation of the one-dimensional (1-D) discrete Fourier transform (DFT), by simplifying the signal-flow graph of the transform, is described. The signal-flow graph is modified by separating the calculation for real and imaginary parts of all inputs and outputs in the signal-flow graph and using properties of the transform. The examples for calculation of the eight- and 16-point DFTs are considered in detail. The calculation of the 16-point DFT of real data requires 12 real multiplications and 58 additions. Two multiplications and 20 additions are used for the eight-point DFT.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Chaos</subject><subject>Chaotic communication</subject><subject>Convergence</subject><subject>Discrete Fourier transforms</subject><subject>Exact sciences and technology</subject><subject>Fast Fourier transform</subject><subject>Flow graphs</subject><subject>Fourier transforms</subject><subject>Graphs</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Mathematical methods</subject><subject>Maximum likelihood estimation</subject><subject>Multiplication</subject><subject>paired function and transform</subject><subject>Signal generators</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Simplification</subject><subject>Telecommunications and information theory</subject><subject>Transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFrGzEQhUVpoKmbcw69iEJLLutIK600eyymTgoOCSSB3ISsHdUK69VWWlPy7yNjQ6CHnGZgvnnMm0fIOWdzzll7-XB_N68Zk3MQ0Gr2gZzyVvKKSa0-lp41ompAP30in3N-ZoxL2apTcnuD0yZ2NHrq-_iP_kl23NActmMffHB2CnGgPiY6bZByVY0xDBPtQnYJJ6TLuEsByzTZIRds-4WceNtnPDvWGXlc_npYXFer26vfi5-rygmopwpAS_BS8rX3a4mCAzTYIOtQaoe661TDtJZOCadbziQ4vW65Bm8l8lqjmJEfB90xxb87zJPZlpuw7-2AcZdNDaxRALKAF--CXGkuGYjynxn59h_6XOwNxYYB1XJZK7XXuzxALsWcE3ozprC16cVwZvZBmBKE2QdhDkGUje9HWZud7X15lQv5ba2Iai1U4b4euICIb2OhWgW1eAXvXo-4</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Grigoryan, A.M.</creator><creator>Bhamidipati, V.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200501</creationdate><title>Method of flow graph simplification for the 16-point discrete Fourier transform</title><author>Grigoryan, A.M. ; Bhamidipati, V.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-88748f441bffb4e31885e5e0de47ce7dd650774c63c791048c7b9178fa4e127e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Chaos</topic><topic>Chaotic communication</topic><topic>Convergence</topic><topic>Discrete Fourier transforms</topic><topic>Exact sciences and technology</topic><topic>Fast Fourier transform</topic><topic>Flow graphs</topic><topic>Fourier transforms</topic><topic>Graphs</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Mathematical methods</topic><topic>Maximum likelihood estimation</topic><topic>Multiplication</topic><topic>paired function and transform</topic><topic>Signal generators</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Simplification</topic><topic>Telecommunications and information theory</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigoryan, A.M.</creatorcontrib><creatorcontrib>Bhamidipati, V.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grigoryan, A.M.</au><au>Bhamidipati, V.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method of flow graph simplification for the 16-point discrete Fourier transform</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2005-01</date><risdate>2005</risdate><volume>53</volume><issue>1</issue><spage>384</spage><epage>389</epage><pages>384-389</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>An efficient method for the realization of the paired algorithm for calculation of the one-dimensional (1-D) discrete Fourier transform (DFT), by simplifying the signal-flow graph of the transform, is described. The signal-flow graph is modified by separating the calculation for real and imaginary parts of all inputs and outputs in the signal-flow graph and using properties of the transform. The examples for calculation of the eight- and 16-point DFTs are considered in detail. The calculation of the 16-point DFT of real data requires 12 real multiplications and 58 additions. Two multiplications and 20 additions are used for the eight-point DFT.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2004.838970</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2005-01, Vol.53 (1), p.384-389 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671408305 |
source | IEEE Electronic Library Online |
subjects | Algorithms Applied sciences Chaos Chaotic communication Convergence Discrete Fourier transforms Exact sciences and technology Fast Fourier transform Flow graphs Fourier transforms Graphs Information, signal and communications theory Mathematical analysis Mathematical methods Maximum likelihood estimation Multiplication paired function and transform Signal generators Signal processing Signal processing algorithms Simplification Telecommunications and information theory Transforms |
title | Method of flow graph simplification for the 16-point discrete Fourier transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20of%20flow%20graph%20simplification%20for%20the%2016-point%20discrete%20Fourier%20transform&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Grigoryan,%20A.M.&rft.date=2005-01&rft.volume=53&rft.issue=1&rft.spage=384&rft.epage=389&rft.pages=384-389&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2004.838970&rft_dat=%3Cproquest_RIE%3E2361964061%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869142664&rft_id=info:pmid/&rft_ieee_id=1369682&rfr_iscdi=true |