Method of flow graph simplification for the 16-point discrete Fourier transform

An efficient method for the realization of the paired algorithm for calculation of the one-dimensional (1-D) discrete Fourier transform (DFT), by simplifying the signal-flow graph of the transform, is described. The signal-flow graph is modified by separating the calculation for real and imaginary p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2005-01, Vol.53 (1), p.384-389
Hauptverfasser: Grigoryan, A.M., Bhamidipati, V.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue 1
container_start_page 384
container_title IEEE transactions on signal processing
container_volume 53
creator Grigoryan, A.M.
Bhamidipati, V.S.
description An efficient method for the realization of the paired algorithm for calculation of the one-dimensional (1-D) discrete Fourier transform (DFT), by simplifying the signal-flow graph of the transform, is described. The signal-flow graph is modified by separating the calculation for real and imaginary parts of all inputs and outputs in the signal-flow graph and using properties of the transform. The examples for calculation of the eight- and 16-point DFTs are considered in detail. The calculation of the 16-point DFT of real data requires 12 real multiplications and 58 additions. Two multiplications and 20 additions are used for the eight-point DFT.
doi_str_mv 10.1109/TSP.2004.838970
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671408305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1369682</ieee_id><sourcerecordid>2361964061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-88748f441bffb4e31885e5e0de47ce7dd650774c63c791048c7b9178fa4e127e3</originalsourceid><addsrcrecordid>eNp9kUFrGzEQhUVpoKmbcw69iEJLLutIK600eyymTgoOCSSB3ISsHdUK69VWWlPy7yNjQ6CHnGZgvnnMm0fIOWdzzll7-XB_N68Zk3MQ0Gr2gZzyVvKKSa0-lp41ompAP30in3N-ZoxL2apTcnuD0yZ2NHrq-_iP_kl23NActmMffHB2CnGgPiY6bZByVY0xDBPtQnYJJ6TLuEsByzTZIRds-4WceNtnPDvWGXlc_npYXFer26vfi5-rygmopwpAS_BS8rX3a4mCAzTYIOtQaoe661TDtJZOCadbziQ4vW65Bm8l8lqjmJEfB90xxb87zJPZlpuw7-2AcZdNDaxRALKAF--CXGkuGYjynxn59h_6XOwNxYYB1XJZK7XXuzxALsWcE3ozprC16cVwZvZBmBKE2QdhDkGUje9HWZud7X15lQv5ba2Iai1U4b4euICIb2OhWgW1eAXvXo-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869142664</pqid></control><display><type>article</type><title>Method of flow graph simplification for the 16-point discrete Fourier transform</title><source>IEEE Electronic Library Online</source><creator>Grigoryan, A.M. ; Bhamidipati, V.S.</creator><creatorcontrib>Grigoryan, A.M. ; Bhamidipati, V.S.</creatorcontrib><description>An efficient method for the realization of the paired algorithm for calculation of the one-dimensional (1-D) discrete Fourier transform (DFT), by simplifying the signal-flow graph of the transform, is described. The signal-flow graph is modified by separating the calculation for real and imaginary parts of all inputs and outputs in the signal-flow graph and using properties of the transform. The examples for calculation of the eight- and 16-point DFTs are considered in detail. The calculation of the 16-point DFT of real data requires 12 real multiplications and 58 additions. Two multiplications and 20 additions are used for the eight-point DFT.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2004.838970</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Chaos ; Chaotic communication ; Convergence ; Discrete Fourier transforms ; Exact sciences and technology ; Fast Fourier transform ; Flow graphs ; Fourier transforms ; Graphs ; Information, signal and communications theory ; Mathematical analysis ; Mathematical methods ; Maximum likelihood estimation ; Multiplication ; paired function and transform ; Signal generators ; Signal processing ; Signal processing algorithms ; Simplification ; Telecommunications and information theory ; Transforms</subject><ispartof>IEEE transactions on signal processing, 2005-01, Vol.53 (1), p.384-389</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-88748f441bffb4e31885e5e0de47ce7dd650774c63c791048c7b9178fa4e127e3</citedby><cites>FETCH-LOGICAL-c382t-88748f441bffb4e31885e5e0de47ce7dd650774c63c791048c7b9178fa4e127e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1369682$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1369682$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16437736$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Grigoryan, A.M.</creatorcontrib><creatorcontrib>Bhamidipati, V.S.</creatorcontrib><title>Method of flow graph simplification for the 16-point discrete Fourier transform</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>An efficient method for the realization of the paired algorithm for calculation of the one-dimensional (1-D) discrete Fourier transform (DFT), by simplifying the signal-flow graph of the transform, is described. The signal-flow graph is modified by separating the calculation for real and imaginary parts of all inputs and outputs in the signal-flow graph and using properties of the transform. The examples for calculation of the eight- and 16-point DFTs are considered in detail. The calculation of the 16-point DFT of real data requires 12 real multiplications and 58 additions. Two multiplications and 20 additions are used for the eight-point DFT.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Chaos</subject><subject>Chaotic communication</subject><subject>Convergence</subject><subject>Discrete Fourier transforms</subject><subject>Exact sciences and technology</subject><subject>Fast Fourier transform</subject><subject>Flow graphs</subject><subject>Fourier transforms</subject><subject>Graphs</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Mathematical methods</subject><subject>Maximum likelihood estimation</subject><subject>Multiplication</subject><subject>paired function and transform</subject><subject>Signal generators</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Simplification</subject><subject>Telecommunications and information theory</subject><subject>Transforms</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFrGzEQhUVpoKmbcw69iEJLLutIK600eyymTgoOCSSB3ISsHdUK69VWWlPy7yNjQ6CHnGZgvnnMm0fIOWdzzll7-XB_N68Zk3MQ0Gr2gZzyVvKKSa0-lp41ompAP30in3N-ZoxL2apTcnuD0yZ2NHrq-_iP_kl23NActmMffHB2CnGgPiY6bZByVY0xDBPtQnYJJ6TLuEsByzTZIRds-4WceNtnPDvWGXlc_npYXFer26vfi5-rygmopwpAS_BS8rX3a4mCAzTYIOtQaoe661TDtJZOCadbziQ4vW65Bm8l8lqjmJEfB90xxb87zJPZlpuw7-2AcZdNDaxRALKAF--CXGkuGYjynxn59h_6XOwNxYYB1XJZK7XXuzxALsWcE3ozprC16cVwZvZBmBKE2QdhDkGUje9HWZud7X15lQv5ba2Iai1U4b4euICIb2OhWgW1eAXvXo-4</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Grigoryan, A.M.</creator><creator>Bhamidipati, V.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200501</creationdate><title>Method of flow graph simplification for the 16-point discrete Fourier transform</title><author>Grigoryan, A.M. ; Bhamidipati, V.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-88748f441bffb4e31885e5e0de47ce7dd650774c63c791048c7b9178fa4e127e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Chaos</topic><topic>Chaotic communication</topic><topic>Convergence</topic><topic>Discrete Fourier transforms</topic><topic>Exact sciences and technology</topic><topic>Fast Fourier transform</topic><topic>Flow graphs</topic><topic>Fourier transforms</topic><topic>Graphs</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Mathematical methods</topic><topic>Maximum likelihood estimation</topic><topic>Multiplication</topic><topic>paired function and transform</topic><topic>Signal generators</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Simplification</topic><topic>Telecommunications and information theory</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigoryan, A.M.</creatorcontrib><creatorcontrib>Bhamidipati, V.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grigoryan, A.M.</au><au>Bhamidipati, V.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method of flow graph simplification for the 16-point discrete Fourier transform</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2005-01</date><risdate>2005</risdate><volume>53</volume><issue>1</issue><spage>384</spage><epage>389</epage><pages>384-389</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>An efficient method for the realization of the paired algorithm for calculation of the one-dimensional (1-D) discrete Fourier transform (DFT), by simplifying the signal-flow graph of the transform, is described. The signal-flow graph is modified by separating the calculation for real and imaginary parts of all inputs and outputs in the signal-flow graph and using properties of the transform. The examples for calculation of the eight- and 16-point DFTs are considered in detail. The calculation of the 16-point DFT of real data requires 12 real multiplications and 58 additions. Two multiplications and 20 additions are used for the eight-point DFT.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2004.838970</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2005-01, Vol.53 (1), p.384-389
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_1671408305
source IEEE Electronic Library Online
subjects Algorithms
Applied sciences
Chaos
Chaotic communication
Convergence
Discrete Fourier transforms
Exact sciences and technology
Fast Fourier transform
Flow graphs
Fourier transforms
Graphs
Information, signal and communications theory
Mathematical analysis
Mathematical methods
Maximum likelihood estimation
Multiplication
paired function and transform
Signal generators
Signal processing
Signal processing algorithms
Simplification
Telecommunications and information theory
Transforms
title Method of flow graph simplification for the 16-point discrete Fourier transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20of%20flow%20graph%20simplification%20for%20the%2016-point%20discrete%20Fourier%20transform&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Grigoryan,%20A.M.&rft.date=2005-01&rft.volume=53&rft.issue=1&rft.spage=384&rft.epage=389&rft.pages=384-389&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2004.838970&rft_dat=%3Cproquest_RIE%3E2361964061%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869142664&rft_id=info:pmid/&rft_ieee_id=1369682&rfr_iscdi=true