Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy
The use of ferromagnetic nanoparticles for hyperthermia and thermoablation therapies has shown great promise in the field of nanobiomedicine. Even local hyperthermia offers numerous advantages as a novel cancer therapy; however, it requires a remarkably high heating power of more than 1 kW g −1 for...
Gespeichert in:
Veröffentlicht in: | Journal of physics. D, Applied physics Applied physics, 2010-12, Vol.43 (47), p.474011-474011 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 474011 |
---|---|
container_issue | 47 |
container_start_page | 474011 |
container_title | Journal of physics. D, Applied physics |
container_volume | 43 |
creator | Kita, Eiji Oda, Tatsuya Kayano, Takeru Sato, Suguru Minagawa, Makoto Yanagihara, Hideto Kishimoto, Mikio Mitsumata, Chiharu Hashimoto, Shinji Yamada, Keiichi Ohkohchi, Nobuhiro |
description | The use of ferromagnetic nanoparticles for hyperthermia and thermoablation therapies has shown great promise in the field of nanobiomedicine. Even local hyperthermia offers numerous advantages as a novel cancer therapy; however, it requires a remarkably high heating power of more than 1 kW g
−1
for heat agents. As a candidate for high heat generation, we focus on ferromagnetic nanoparticles and compare their physical properties with those of superparamagnetic substances. Numerical simulations for ideal single-domain ferromagnetic nanoparticles with cubic and uniaxial magnetic symmetries were carried out and
MH
curves together with minor loops were obtained. From the simulation, the efficient use of an alternating magnetic field (AMF) having a limited amplitude was discussed. Co-ferrite nanoparticles with various magnitudes of coercive force were produced by co-precipitation and a hydrothermal process. A maximum specific loss power of 420 W g
−1
was obtained using an AMF at 117 kHz with
H
0
= 51.4 kA m
−1
(640 Oe). The relaxation behaviour in the ferromagnetic state below the superparamagnetic blocking temperature was examined by Mössbauer spectroscopy. |
doi_str_mv | 10.1088/0022-3727/43/47/474011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671404904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671404904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-f2cb4bb9a895bdf1284c6494147d8a181a67028da5d24c1030367184e375241a3</originalsourceid><addsrcrecordid>eNqNkD9PwzAQxS0EEqXwFVAWJJZQn31xnBFVFJAqwQCzdXEcGpTGwU6HfnvSFnWBgeX-6H7vnfQYuwZ-B1zrGedCpDIX-QzlDMeaIwc4YROQClKFSp6yyRE6ZxcxfnLOM6Vhwl4XLgS_po_ODY1NOup8T2EcWxeT2ofkeFptexeGlQvrhhLqqmQ_eypbGhrf7Vfqt5fsrKY2uqufPmXvi4e3-VO6fHl8nt8vU4sKh7QWtsSyLEgXWVnVIDRahQUC5pUm0EAq50JXlFUCLXDJpcpBo5N5JhBITtntwbcP_mvj4mDWTbSubalzfhMNjDhyLDiOqDqgNvgYg6tNH5o1ha0BbnYRml06ZpeOQWlwrPsIR-HNzw-Klto6UGebeFQLqRSHohg5OHCN7__vnf7W_M2avqrlN5RijTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671404904</pqid></control><display><type>article</type><title>Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy</title><source>Institute of Physics Journals</source><creator>Kita, Eiji ; Oda, Tatsuya ; Kayano, Takeru ; Sato, Suguru ; Minagawa, Makoto ; Yanagihara, Hideto ; Kishimoto, Mikio ; Mitsumata, Chiharu ; Hashimoto, Shinji ; Yamada, Keiichi ; Ohkohchi, Nobuhiro</creator><creatorcontrib>Kita, Eiji ; Oda, Tatsuya ; Kayano, Takeru ; Sato, Suguru ; Minagawa, Makoto ; Yanagihara, Hideto ; Kishimoto, Mikio ; Mitsumata, Chiharu ; Hashimoto, Shinji ; Yamada, Keiichi ; Ohkohchi, Nobuhiro</creatorcontrib><description>The use of ferromagnetic nanoparticles for hyperthermia and thermoablation therapies has shown great promise in the field of nanobiomedicine. Even local hyperthermia offers numerous advantages as a novel cancer therapy; however, it requires a remarkably high heating power of more than 1 kW g
−1
for heat agents. As a candidate for high heat generation, we focus on ferromagnetic nanoparticles and compare their physical properties with those of superparamagnetic substances. Numerical simulations for ideal single-domain ferromagnetic nanoparticles with cubic and uniaxial magnetic symmetries were carried out and
MH
curves together with minor loops were obtained. From the simulation, the efficient use of an alternating magnetic field (AMF) having a limited amplitude was discussed. Co-ferrite nanoparticles with various magnitudes of coercive force were produced by co-precipitation and a hydrothermal process. A maximum specific loss power of 420 W g
−1
was obtained using an AMF at 117 kHz with
H
0
= 51.4 kA m
−1
(640 Oe). The relaxation behaviour in the ferromagnetic state below the superparamagnetic blocking temperature was examined by Mössbauer spectroscopy.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/0022-3727/43/47/474011</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Coercive force ; Computer simulation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Diamagnetism, paramagnetism and superparamagnetism ; Exact sciences and technology ; Ferromagnetism ; Heating ; Hyperthermia ; Magnetic properties and materials ; Magnetic properties of nanostructures ; Magnetic resonances and relaxations in condensed matter, mössbauer effect ; Mössbauer effect; other γ-ray spectroscopy ; Nanoparticles ; Nanostructure ; Physics ; Therapy</subject><ispartof>Journal of physics. D, Applied physics, 2010-12, Vol.43 (47), p.474011-474011</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-f2cb4bb9a895bdf1284c6494147d8a181a67028da5d24c1030367184e375241a3</citedby><cites>FETCH-LOGICAL-c464t-f2cb4bb9a895bdf1284c6494147d8a181a67028da5d24c1030367184e375241a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0022-3727/43/47/474011/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23660199$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kita, Eiji</creatorcontrib><creatorcontrib>Oda, Tatsuya</creatorcontrib><creatorcontrib>Kayano, Takeru</creatorcontrib><creatorcontrib>Sato, Suguru</creatorcontrib><creatorcontrib>Minagawa, Makoto</creatorcontrib><creatorcontrib>Yanagihara, Hideto</creatorcontrib><creatorcontrib>Kishimoto, Mikio</creatorcontrib><creatorcontrib>Mitsumata, Chiharu</creatorcontrib><creatorcontrib>Hashimoto, Shinji</creatorcontrib><creatorcontrib>Yamada, Keiichi</creatorcontrib><creatorcontrib>Ohkohchi, Nobuhiro</creatorcontrib><title>Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy</title><title>Journal of physics. D, Applied physics</title><description>The use of ferromagnetic nanoparticles for hyperthermia and thermoablation therapies has shown great promise in the field of nanobiomedicine. Even local hyperthermia offers numerous advantages as a novel cancer therapy; however, it requires a remarkably high heating power of more than 1 kW g
−1
for heat agents. As a candidate for high heat generation, we focus on ferromagnetic nanoparticles and compare their physical properties with those of superparamagnetic substances. Numerical simulations for ideal single-domain ferromagnetic nanoparticles with cubic and uniaxial magnetic symmetries were carried out and
MH
curves together with minor loops were obtained. From the simulation, the efficient use of an alternating magnetic field (AMF) having a limited amplitude was discussed. Co-ferrite nanoparticles with various magnitudes of coercive force were produced by co-precipitation and a hydrothermal process. A maximum specific loss power of 420 W g
−1
was obtained using an AMF at 117 kHz with
H
0
= 51.4 kA m
−1
(640 Oe). The relaxation behaviour in the ferromagnetic state below the superparamagnetic blocking temperature was examined by Mössbauer spectroscopy.</description><subject>Coercive force</subject><subject>Computer simulation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Diamagnetism, paramagnetism and superparamagnetism</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetism</subject><subject>Heating</subject><subject>Hyperthermia</subject><subject>Magnetic properties and materials</subject><subject>Magnetic properties of nanostructures</subject><subject>Magnetic resonances and relaxations in condensed matter, mössbauer effect</subject><subject>Mössbauer effect; other γ-ray spectroscopy</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Therapy</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkD9PwzAQxS0EEqXwFVAWJJZQn31xnBFVFJAqwQCzdXEcGpTGwU6HfnvSFnWBgeX-6H7vnfQYuwZ-B1zrGedCpDIX-QzlDMeaIwc4YROQClKFSp6yyRE6ZxcxfnLOM6Vhwl4XLgS_po_ODY1NOup8T2EcWxeT2ofkeFptexeGlQvrhhLqqmQ_eypbGhrf7Vfqt5fsrKY2uqufPmXvi4e3-VO6fHl8nt8vU4sKh7QWtsSyLEgXWVnVIDRahQUC5pUm0EAq50JXlFUCLXDJpcpBo5N5JhBITtntwbcP_mvj4mDWTbSubalzfhMNjDhyLDiOqDqgNvgYg6tNH5o1ha0BbnYRml06ZpeOQWlwrPsIR-HNzw-Klto6UGebeFQLqRSHohg5OHCN7__vnf7W_M2avqrlN5RijTw</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Kita, Eiji</creator><creator>Oda, Tatsuya</creator><creator>Kayano, Takeru</creator><creator>Sato, Suguru</creator><creator>Minagawa, Makoto</creator><creator>Yanagihara, Hideto</creator><creator>Kishimoto, Mikio</creator><creator>Mitsumata, Chiharu</creator><creator>Hashimoto, Shinji</creator><creator>Yamada, Keiichi</creator><creator>Ohkohchi, Nobuhiro</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20101201</creationdate><title>Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy</title><author>Kita, Eiji ; Oda, Tatsuya ; Kayano, Takeru ; Sato, Suguru ; Minagawa, Makoto ; Yanagihara, Hideto ; Kishimoto, Mikio ; Mitsumata, Chiharu ; Hashimoto, Shinji ; Yamada, Keiichi ; Ohkohchi, Nobuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-f2cb4bb9a895bdf1284c6494147d8a181a67028da5d24c1030367184e375241a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Coercive force</topic><topic>Computer simulation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Diamagnetism, paramagnetism and superparamagnetism</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetism</topic><topic>Heating</topic><topic>Hyperthermia</topic><topic>Magnetic properties and materials</topic><topic>Magnetic properties of nanostructures</topic><topic>Magnetic resonances and relaxations in condensed matter, mössbauer effect</topic><topic>Mössbauer effect; other γ-ray spectroscopy</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kita, Eiji</creatorcontrib><creatorcontrib>Oda, Tatsuya</creatorcontrib><creatorcontrib>Kayano, Takeru</creatorcontrib><creatorcontrib>Sato, Suguru</creatorcontrib><creatorcontrib>Minagawa, Makoto</creatorcontrib><creatorcontrib>Yanagihara, Hideto</creatorcontrib><creatorcontrib>Kishimoto, Mikio</creatorcontrib><creatorcontrib>Mitsumata, Chiharu</creatorcontrib><creatorcontrib>Hashimoto, Shinji</creatorcontrib><creatorcontrib>Yamada, Keiichi</creatorcontrib><creatorcontrib>Ohkohchi, Nobuhiro</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kita, Eiji</au><au>Oda, Tatsuya</au><au>Kayano, Takeru</au><au>Sato, Suguru</au><au>Minagawa, Makoto</au><au>Yanagihara, Hideto</au><au>Kishimoto, Mikio</au><au>Mitsumata, Chiharu</au><au>Hashimoto, Shinji</au><au>Yamada, Keiichi</au><au>Ohkohchi, Nobuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>43</volume><issue>47</issue><spage>474011</spage><epage>474011</epage><pages>474011-474011</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>The use of ferromagnetic nanoparticles for hyperthermia and thermoablation therapies has shown great promise in the field of nanobiomedicine. Even local hyperthermia offers numerous advantages as a novel cancer therapy; however, it requires a remarkably high heating power of more than 1 kW g
−1
for heat agents. As a candidate for high heat generation, we focus on ferromagnetic nanoparticles and compare their physical properties with those of superparamagnetic substances. Numerical simulations for ideal single-domain ferromagnetic nanoparticles with cubic and uniaxial magnetic symmetries were carried out and
MH
curves together with minor loops were obtained. From the simulation, the efficient use of an alternating magnetic field (AMF) having a limited amplitude was discussed. Co-ferrite nanoparticles with various magnitudes of coercive force were produced by co-precipitation and a hydrothermal process. A maximum specific loss power of 420 W g
−1
was obtained using an AMF at 117 kHz with
H
0
= 51.4 kA m
−1
(640 Oe). The relaxation behaviour in the ferromagnetic state below the superparamagnetic blocking temperature was examined by Mössbauer spectroscopy.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0022-3727/43/47/474011</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3727 |
ispartof | Journal of physics. D, Applied physics, 2010-12, Vol.43 (47), p.474011-474011 |
issn | 0022-3727 1361-6463 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671404904 |
source | Institute of Physics Journals |
subjects | Coercive force Computer simulation Condensed matter: electronic structure, electrical, magnetic, and optical properties Diamagnetism, paramagnetism and superparamagnetism Exact sciences and technology Ferromagnetism Heating Hyperthermia Magnetic properties and materials Magnetic properties of nanostructures Magnetic resonances and relaxations in condensed matter, mössbauer effect Mössbauer effect other γ-ray spectroscopy Nanoparticles Nanostructure Physics Therapy |
title | Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferromagnetic%20nanoparticles%20for%20magnetic%20hyperthermia%20and%20thermoablation%20therapy&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Kita,%20Eiji&rft.date=2010-12-01&rft.volume=43&rft.issue=47&rft.spage=474011&rft.epage=474011&rft.pages=474011-474011&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/0022-3727/43/47/474011&rft_dat=%3Cproquest_pasca%3E1671404904%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671404904&rft_id=info:pmid/&rfr_iscdi=true |