Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy

The use of ferromagnetic nanoparticles for hyperthermia and thermoablation therapies has shown great promise in the field of nanobiomedicine. Even local hyperthermia offers numerous advantages as a novel cancer therapy; however, it requires a remarkably high heating power of more than 1 kW g −1 for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. D, Applied physics Applied physics, 2010-12, Vol.43 (47), p.474011-474011
Hauptverfasser: Kita, Eiji, Oda, Tatsuya, Kayano, Takeru, Sato, Suguru, Minagawa, Makoto, Yanagihara, Hideto, Kishimoto, Mikio, Mitsumata, Chiharu, Hashimoto, Shinji, Yamada, Keiichi, Ohkohchi, Nobuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 474011
container_issue 47
container_start_page 474011
container_title Journal of physics. D, Applied physics
container_volume 43
creator Kita, Eiji
Oda, Tatsuya
Kayano, Takeru
Sato, Suguru
Minagawa, Makoto
Yanagihara, Hideto
Kishimoto, Mikio
Mitsumata, Chiharu
Hashimoto, Shinji
Yamada, Keiichi
Ohkohchi, Nobuhiro
description The use of ferromagnetic nanoparticles for hyperthermia and thermoablation therapies has shown great promise in the field of nanobiomedicine. Even local hyperthermia offers numerous advantages as a novel cancer therapy; however, it requires a remarkably high heating power of more than 1 kW g −1 for heat agents. As a candidate for high heat generation, we focus on ferromagnetic nanoparticles and compare their physical properties with those of superparamagnetic substances. Numerical simulations for ideal single-domain ferromagnetic nanoparticles with cubic and uniaxial magnetic symmetries were carried out and MH curves together with minor loops were obtained. From the simulation, the efficient use of an alternating magnetic field (AMF) having a limited amplitude was discussed. Co-ferrite nanoparticles with various magnitudes of coercive force were produced by co-precipitation and a hydrothermal process. A maximum specific loss power of 420 W g −1 was obtained using an AMF at 117 kHz with H 0 = 51.4 kA m −1 (640 Oe). The relaxation behaviour in the ferromagnetic state below the superparamagnetic blocking temperature was examined by Mössbauer spectroscopy.
doi_str_mv 10.1088/0022-3727/43/47/474011
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671404904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671404904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-f2cb4bb9a895bdf1284c6494147d8a181a67028da5d24c1030367184e375241a3</originalsourceid><addsrcrecordid>eNqNkD9PwzAQxS0EEqXwFVAWJJZQn31xnBFVFJAqwQCzdXEcGpTGwU6HfnvSFnWBgeX-6H7vnfQYuwZ-B1zrGedCpDIX-QzlDMeaIwc4YROQClKFSp6yyRE6ZxcxfnLOM6Vhwl4XLgS_po_ODY1NOup8T2EcWxeT2ofkeFptexeGlQvrhhLqqmQ_eypbGhrf7Vfqt5fsrKY2uqufPmXvi4e3-VO6fHl8nt8vU4sKh7QWtsSyLEgXWVnVIDRahQUC5pUm0EAq50JXlFUCLXDJpcpBo5N5JhBITtntwbcP_mvj4mDWTbSubalzfhMNjDhyLDiOqDqgNvgYg6tNH5o1ha0BbnYRml06ZpeOQWlwrPsIR-HNzw-Klto6UGebeFQLqRSHohg5OHCN7__vnf7W_M2avqrlN5RijTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671404904</pqid></control><display><type>article</type><title>Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy</title><source>Institute of Physics Journals</source><creator>Kita, Eiji ; Oda, Tatsuya ; Kayano, Takeru ; Sato, Suguru ; Minagawa, Makoto ; Yanagihara, Hideto ; Kishimoto, Mikio ; Mitsumata, Chiharu ; Hashimoto, Shinji ; Yamada, Keiichi ; Ohkohchi, Nobuhiro</creator><creatorcontrib>Kita, Eiji ; Oda, Tatsuya ; Kayano, Takeru ; Sato, Suguru ; Minagawa, Makoto ; Yanagihara, Hideto ; Kishimoto, Mikio ; Mitsumata, Chiharu ; Hashimoto, Shinji ; Yamada, Keiichi ; Ohkohchi, Nobuhiro</creatorcontrib><description>The use of ferromagnetic nanoparticles for hyperthermia and thermoablation therapies has shown great promise in the field of nanobiomedicine. Even local hyperthermia offers numerous advantages as a novel cancer therapy; however, it requires a remarkably high heating power of more than 1 kW g −1 for heat agents. As a candidate for high heat generation, we focus on ferromagnetic nanoparticles and compare their physical properties with those of superparamagnetic substances. Numerical simulations for ideal single-domain ferromagnetic nanoparticles with cubic and uniaxial magnetic symmetries were carried out and MH curves together with minor loops were obtained. From the simulation, the efficient use of an alternating magnetic field (AMF) having a limited amplitude was discussed. Co-ferrite nanoparticles with various magnitudes of coercive force were produced by co-precipitation and a hydrothermal process. A maximum specific loss power of 420 W g −1 was obtained using an AMF at 117 kHz with H 0 = 51.4 kA m −1 (640 Oe). The relaxation behaviour in the ferromagnetic state below the superparamagnetic blocking temperature was examined by Mössbauer spectroscopy.</description><identifier>ISSN: 0022-3727</identifier><identifier>EISSN: 1361-6463</identifier><identifier>DOI: 10.1088/0022-3727/43/47/474011</identifier><identifier>CODEN: JPAPBE</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Coercive force ; Computer simulation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Diamagnetism, paramagnetism and superparamagnetism ; Exact sciences and technology ; Ferromagnetism ; Heating ; Hyperthermia ; Magnetic properties and materials ; Magnetic properties of nanostructures ; Magnetic resonances and relaxations in condensed matter, mössbauer effect ; Mössbauer effect; other γ-ray spectroscopy ; Nanoparticles ; Nanostructure ; Physics ; Therapy</subject><ispartof>Journal of physics. D, Applied physics, 2010-12, Vol.43 (47), p.474011-474011</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-f2cb4bb9a895bdf1284c6494147d8a181a67028da5d24c1030367184e375241a3</citedby><cites>FETCH-LOGICAL-c464t-f2cb4bb9a895bdf1284c6494147d8a181a67028da5d24c1030367184e375241a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0022-3727/43/47/474011/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,53830,53910</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23660199$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kita, Eiji</creatorcontrib><creatorcontrib>Oda, Tatsuya</creatorcontrib><creatorcontrib>Kayano, Takeru</creatorcontrib><creatorcontrib>Sato, Suguru</creatorcontrib><creatorcontrib>Minagawa, Makoto</creatorcontrib><creatorcontrib>Yanagihara, Hideto</creatorcontrib><creatorcontrib>Kishimoto, Mikio</creatorcontrib><creatorcontrib>Mitsumata, Chiharu</creatorcontrib><creatorcontrib>Hashimoto, Shinji</creatorcontrib><creatorcontrib>Yamada, Keiichi</creatorcontrib><creatorcontrib>Ohkohchi, Nobuhiro</creatorcontrib><title>Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy</title><title>Journal of physics. D, Applied physics</title><description>The use of ferromagnetic nanoparticles for hyperthermia and thermoablation therapies has shown great promise in the field of nanobiomedicine. Even local hyperthermia offers numerous advantages as a novel cancer therapy; however, it requires a remarkably high heating power of more than 1 kW g −1 for heat agents. As a candidate for high heat generation, we focus on ferromagnetic nanoparticles and compare their physical properties with those of superparamagnetic substances. Numerical simulations for ideal single-domain ferromagnetic nanoparticles with cubic and uniaxial magnetic symmetries were carried out and MH curves together with minor loops were obtained. From the simulation, the efficient use of an alternating magnetic field (AMF) having a limited amplitude was discussed. Co-ferrite nanoparticles with various magnitudes of coercive force were produced by co-precipitation and a hydrothermal process. A maximum specific loss power of 420 W g −1 was obtained using an AMF at 117 kHz with H 0 = 51.4 kA m −1 (640 Oe). The relaxation behaviour in the ferromagnetic state below the superparamagnetic blocking temperature was examined by Mössbauer spectroscopy.</description><subject>Coercive force</subject><subject>Computer simulation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Diamagnetism, paramagnetism and superparamagnetism</subject><subject>Exact sciences and technology</subject><subject>Ferromagnetism</subject><subject>Heating</subject><subject>Hyperthermia</subject><subject>Magnetic properties and materials</subject><subject>Magnetic properties of nanostructures</subject><subject>Magnetic resonances and relaxations in condensed matter, mössbauer effect</subject><subject>Mössbauer effect; other γ-ray spectroscopy</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Therapy</subject><issn>0022-3727</issn><issn>1361-6463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkD9PwzAQxS0EEqXwFVAWJJZQn31xnBFVFJAqwQCzdXEcGpTGwU6HfnvSFnWBgeX-6H7vnfQYuwZ-B1zrGedCpDIX-QzlDMeaIwc4YROQClKFSp6yyRE6ZxcxfnLOM6Vhwl4XLgS_po_ODY1NOup8T2EcWxeT2ofkeFptexeGlQvrhhLqqmQ_eypbGhrf7Vfqt5fsrKY2uqufPmXvi4e3-VO6fHl8nt8vU4sKh7QWtsSyLEgXWVnVIDRahQUC5pUm0EAq50JXlFUCLXDJpcpBo5N5JhBITtntwbcP_mvj4mDWTbSubalzfhMNjDhyLDiOqDqgNvgYg6tNH5o1ha0BbnYRml06ZpeOQWlwrPsIR-HNzw-Klto6UGebeFQLqRSHohg5OHCN7__vnf7W_M2avqrlN5RijTw</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Kita, Eiji</creator><creator>Oda, Tatsuya</creator><creator>Kayano, Takeru</creator><creator>Sato, Suguru</creator><creator>Minagawa, Makoto</creator><creator>Yanagihara, Hideto</creator><creator>Kishimoto, Mikio</creator><creator>Mitsumata, Chiharu</creator><creator>Hashimoto, Shinji</creator><creator>Yamada, Keiichi</creator><creator>Ohkohchi, Nobuhiro</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20101201</creationdate><title>Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy</title><author>Kita, Eiji ; Oda, Tatsuya ; Kayano, Takeru ; Sato, Suguru ; Minagawa, Makoto ; Yanagihara, Hideto ; Kishimoto, Mikio ; Mitsumata, Chiharu ; Hashimoto, Shinji ; Yamada, Keiichi ; Ohkohchi, Nobuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-f2cb4bb9a895bdf1284c6494147d8a181a67028da5d24c1030367184e375241a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Coercive force</topic><topic>Computer simulation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Diamagnetism, paramagnetism and superparamagnetism</topic><topic>Exact sciences and technology</topic><topic>Ferromagnetism</topic><topic>Heating</topic><topic>Hyperthermia</topic><topic>Magnetic properties and materials</topic><topic>Magnetic properties of nanostructures</topic><topic>Magnetic resonances and relaxations in condensed matter, mössbauer effect</topic><topic>Mössbauer effect; other γ-ray spectroscopy</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kita, Eiji</creatorcontrib><creatorcontrib>Oda, Tatsuya</creatorcontrib><creatorcontrib>Kayano, Takeru</creatorcontrib><creatorcontrib>Sato, Suguru</creatorcontrib><creatorcontrib>Minagawa, Makoto</creatorcontrib><creatorcontrib>Yanagihara, Hideto</creatorcontrib><creatorcontrib>Kishimoto, Mikio</creatorcontrib><creatorcontrib>Mitsumata, Chiharu</creatorcontrib><creatorcontrib>Hashimoto, Shinji</creatorcontrib><creatorcontrib>Yamada, Keiichi</creatorcontrib><creatorcontrib>Ohkohchi, Nobuhiro</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. D, Applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kita, Eiji</au><au>Oda, Tatsuya</au><au>Kayano, Takeru</au><au>Sato, Suguru</au><au>Minagawa, Makoto</au><au>Yanagihara, Hideto</au><au>Kishimoto, Mikio</au><au>Mitsumata, Chiharu</au><au>Hashimoto, Shinji</au><au>Yamada, Keiichi</au><au>Ohkohchi, Nobuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy</atitle><jtitle>Journal of physics. D, Applied physics</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>43</volume><issue>47</issue><spage>474011</spage><epage>474011</epage><pages>474011-474011</pages><issn>0022-3727</issn><eissn>1361-6463</eissn><coden>JPAPBE</coden><abstract>The use of ferromagnetic nanoparticles for hyperthermia and thermoablation therapies has shown great promise in the field of nanobiomedicine. Even local hyperthermia offers numerous advantages as a novel cancer therapy; however, it requires a remarkably high heating power of more than 1 kW g −1 for heat agents. As a candidate for high heat generation, we focus on ferromagnetic nanoparticles and compare their physical properties with those of superparamagnetic substances. Numerical simulations for ideal single-domain ferromagnetic nanoparticles with cubic and uniaxial magnetic symmetries were carried out and MH curves together with minor loops were obtained. From the simulation, the efficient use of an alternating magnetic field (AMF) having a limited amplitude was discussed. Co-ferrite nanoparticles with various magnitudes of coercive force were produced by co-precipitation and a hydrothermal process. A maximum specific loss power of 420 W g −1 was obtained using an AMF at 117 kHz with H 0 = 51.4 kA m −1 (640 Oe). The relaxation behaviour in the ferromagnetic state below the superparamagnetic blocking temperature was examined by Mössbauer spectroscopy.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0022-3727/43/47/474011</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3727
ispartof Journal of physics. D, Applied physics, 2010-12, Vol.43 (47), p.474011-474011
issn 0022-3727
1361-6463
language eng
recordid cdi_proquest_miscellaneous_1671404904
source Institute of Physics Journals
subjects Coercive force
Computer simulation
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Diamagnetism, paramagnetism and superparamagnetism
Exact sciences and technology
Ferromagnetism
Heating
Hyperthermia
Magnetic properties and materials
Magnetic properties of nanostructures
Magnetic resonances and relaxations in condensed matter, mössbauer effect
Mössbauer effect
other γ-ray spectroscopy
Nanoparticles
Nanostructure
Physics
Therapy
title Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferromagnetic%20nanoparticles%20for%20magnetic%20hyperthermia%20and%20thermoablation%20therapy&rft.jtitle=Journal%20of%20physics.%20D,%20Applied%20physics&rft.au=Kita,%20Eiji&rft.date=2010-12-01&rft.volume=43&rft.issue=47&rft.spage=474011&rft.epage=474011&rft.pages=474011-474011&rft.issn=0022-3727&rft.eissn=1361-6463&rft.coden=JPAPBE&rft_id=info:doi/10.1088/0022-3727/43/47/474011&rft_dat=%3Cproquest_pasca%3E1671404904%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671404904&rft_id=info:pmid/&rfr_iscdi=true