Aquaculture Monitoring System Design based on BP Neural Network Algorithm

Traditional aquaculture systems have some shortcomings, such as acquired information is difficult, reasoning ability is weak, the level of intelligence is low and so on. In order to overcome these demerits, this paper elaborated a design using BP neural network in aquaculture monitoring systems, emp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advancements in computing technology 2013-02, Vol.5 (3), p.779-779
Hauptverfasser: Li, Xin-hui, Yu, A-long, Sun, Hong-bing, Jia, Fang-fang, Pan, Miao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 779
container_issue 3
container_start_page 779
container_title International journal of advancements in computing technology
container_volume 5
creator Li, Xin-hui
Yu, A-long
Sun, Hong-bing
Jia, Fang-fang
Pan, Miao
description Traditional aquaculture systems have some shortcomings, such as acquired information is difficult, reasoning ability is weak, the level of intelligence is low and so on. In order to overcome these demerits, this paper elaborated a design using BP neural network in aquaculture monitoring systems, employing Fuzzy Description to quantify water quality factors in aquaculture. Characteristic of the system is introduced by system model and implementation process. The system used a slight modification of the protocol stack achieved cluster settings which set a pool manually as a cluster. The experimental data shows that the error is less than 1%. The platform overcomes subjective of relying on the expertise completely. It has high efficiency diagnosis, high practicality and flexibility.
doi_str_mv 10.4156/ijact.vol5.issue3.90
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671404731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671404731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1111-9f848496a26c4eee2d95e16d3778e5f29a6604409a4ce4799450d557f34507ff3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EElXpP2DwyJJgx694LOVVqTwkYLZMch1Skri1E1D_PSll5yznDN-9w4fQOSUpp0Je1mtb9OmXb0RaxzgASzU5QpMsYyzRjKnjcRMikpwwfYpmMa7JGK0IpWKClvPtYIuh6YcA-MF3de9D3VX4ZRd7aPE1xLrq8LuNUGLf4atn_AhDsM1Y_bcPn3jeVONF_9GeoRNnmwizv56it9ub18V9snq6Wy7mq6SgYxLtcp5zLW0mCw4AWakFUFkypXIQLtNWSsI50ZYXwJXWXJBSCOXYOJRzbIouDn83wW8HiL1p61hA09gO_BANlYpywhWj_6NMCpppIfMR5Qe0CD7GAM5sQt3asDOUmL1n8-vZ7D2bg2ejCfsByrBzrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365129568</pqid></control><display><type>article</type><title>Aquaculture Monitoring System Design based on BP Neural Network Algorithm</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Xin-hui ; Yu, A-long ; Sun, Hong-bing ; Jia, Fang-fang ; Pan, Miao</creator><creatorcontrib>Li, Xin-hui ; Yu, A-long ; Sun, Hong-bing ; Jia, Fang-fang ; Pan, Miao</creatorcontrib><description>Traditional aquaculture systems have some shortcomings, such as acquired information is difficult, reasoning ability is weak, the level of intelligence is low and so on. In order to overcome these demerits, this paper elaborated a design using BP neural network in aquaculture monitoring systems, employing Fuzzy Description to quantify water quality factors in aquaculture. Characteristic of the system is introduced by system model and implementation process. The system used a slight modification of the protocol stack achieved cluster settings which set a pool manually as a cluster. The experimental data shows that the error is less than 1%. The platform overcomes subjective of relying on the expertise completely. It has high efficiency diagnosis, high practicality and flexibility.</description><identifier>ISSN: 2005-8039</identifier><identifier>EISSN: 2233-9337</identifier><identifier>DOI: 10.4156/ijact.vol5.issue3.90</identifier><language>eng</language><subject>Algorithms ; Aquaculture ; Back propagation ; Clusters ; Mathematical models ; Monitoring ; Neural networks ; Water quality</subject><ispartof>International journal of advancements in computing technology, 2013-02, Vol.5 (3), p.779-779</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Xin-hui</creatorcontrib><creatorcontrib>Yu, A-long</creatorcontrib><creatorcontrib>Sun, Hong-bing</creatorcontrib><creatorcontrib>Jia, Fang-fang</creatorcontrib><creatorcontrib>Pan, Miao</creatorcontrib><title>Aquaculture Monitoring System Design based on BP Neural Network Algorithm</title><title>International journal of advancements in computing technology</title><description>Traditional aquaculture systems have some shortcomings, such as acquired information is difficult, reasoning ability is weak, the level of intelligence is low and so on. In order to overcome these demerits, this paper elaborated a design using BP neural network in aquaculture monitoring systems, employing Fuzzy Description to quantify water quality factors in aquaculture. Characteristic of the system is introduced by system model and implementation process. The system used a slight modification of the protocol stack achieved cluster settings which set a pool manually as a cluster. The experimental data shows that the error is less than 1%. The platform overcomes subjective of relying on the expertise completely. It has high efficiency diagnosis, high practicality and flexibility.</description><subject>Algorithms</subject><subject>Aquaculture</subject><subject>Back propagation</subject><subject>Clusters</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Water quality</subject><issn>2005-8039</issn><issn>2233-9337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EElXpP2DwyJJgx694LOVVqTwkYLZMch1Skri1E1D_PSll5yznDN-9w4fQOSUpp0Je1mtb9OmXb0RaxzgASzU5QpMsYyzRjKnjcRMikpwwfYpmMa7JGK0IpWKClvPtYIuh6YcA-MF3de9D3VX4ZRd7aPE1xLrq8LuNUGLf4atn_AhDsM1Y_bcPn3jeVONF_9GeoRNnmwizv56it9ub18V9snq6Wy7mq6SgYxLtcp5zLW0mCw4AWakFUFkypXIQLtNWSsI50ZYXwJXWXJBSCOXYOJRzbIouDn83wW8HiL1p61hA09gO_BANlYpywhWj_6NMCpppIfMR5Qe0CD7GAM5sQt3asDOUmL1n8-vZ7D2bg2ejCfsByrBzrA</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Li, Xin-hui</creator><creator>Yu, A-long</creator><creator>Sun, Hong-bing</creator><creator>Jia, Fang-fang</creator><creator>Pan, Miao</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130201</creationdate><title>Aquaculture Monitoring System Design based on BP Neural Network Algorithm</title><author>Li, Xin-hui ; Yu, A-long ; Sun, Hong-bing ; Jia, Fang-fang ; Pan, Miao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1111-9f848496a26c4eee2d95e16d3778e5f29a6604409a4ce4799450d557f34507ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Aquaculture</topic><topic>Back propagation</topic><topic>Clusters</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xin-hui</creatorcontrib><creatorcontrib>Yu, A-long</creatorcontrib><creatorcontrib>Sun, Hong-bing</creatorcontrib><creatorcontrib>Jia, Fang-fang</creatorcontrib><creatorcontrib>Pan, Miao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of advancements in computing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xin-hui</au><au>Yu, A-long</au><au>Sun, Hong-bing</au><au>Jia, Fang-fang</au><au>Pan, Miao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aquaculture Monitoring System Design based on BP Neural Network Algorithm</atitle><jtitle>International journal of advancements in computing technology</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>5</volume><issue>3</issue><spage>779</spage><epage>779</epage><pages>779-779</pages><issn>2005-8039</issn><eissn>2233-9337</eissn><abstract>Traditional aquaculture systems have some shortcomings, such as acquired information is difficult, reasoning ability is weak, the level of intelligence is low and so on. In order to overcome these demerits, this paper elaborated a design using BP neural network in aquaculture monitoring systems, employing Fuzzy Description to quantify water quality factors in aquaculture. Characteristic of the system is introduced by system model and implementation process. The system used a slight modification of the protocol stack achieved cluster settings which set a pool manually as a cluster. The experimental data shows that the error is less than 1%. The platform overcomes subjective of relying on the expertise completely. It has high efficiency diagnosis, high practicality and flexibility.</abstract><doi>10.4156/ijact.vol5.issue3.90</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2005-8039
ispartof International journal of advancements in computing technology, 2013-02, Vol.5 (3), p.779-779
issn 2005-8039
2233-9337
language eng
recordid cdi_proquest_miscellaneous_1671404731
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Aquaculture
Back propagation
Clusters
Mathematical models
Monitoring
Neural networks
Water quality
title Aquaculture Monitoring System Design based on BP Neural Network Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aquaculture%20Monitoring%20System%20Design%20based%20on%20BP%20Neural%20Network%20Algorithm&rft.jtitle=International%20journal%20of%20advancements%20in%20computing%20technology&rft.au=Li,%20Xin-hui&rft.date=2013-02-01&rft.volume=5&rft.issue=3&rft.spage=779&rft.epage=779&rft.pages=779-779&rft.issn=2005-8039&rft.eissn=2233-9337&rft_id=info:doi/10.4156/ijact.vol5.issue3.90&rft_dat=%3Cproquest_cross%3E1671404731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365129568&rft_id=info:pmid/&rfr_iscdi=true