An interacting crack-mechanics based model for elastoplastic damage model of rock-like materials under compression

A micro-mechanical elastoplastic damage model for rock-like materials under compressive loading is proposed based on the growth of pre-existing flaws. Interaction among the cracks is included through the self-consistent approach. The evolution of damage is quantified by the spatial flaw density and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2013-02, Vol.58, p.92-102
Hauptverfasser: Yuan, X.P., Liu, H.Y., Wang, Z.Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue
container_start_page 92
container_title International journal of rock mechanics and mining sciences (Oxford, England : 1997)
container_volume 58
creator Yuan, X.P.
Liu, H.Y.
Wang, Z.Q.
description A micro-mechanical elastoplastic damage model for rock-like materials under compressive loading is proposed based on the growth of pre-existing flaws. Interaction among the cracks is included through the self-consistent approach. The evolution of damage is quantified by the spatial flaw density and the density of the quasi-static spherical region, enclosing the flaw and its wings. The flaw density is defined by the absolute volume strain in the two-parameter Weibull statistical model. Mixed-mode fracture model is adopted to calculate the wing crack length by the strain energy density (SED) criterion. Drucker–Prager yield criterion and Voyiadjis' strain hardening function under compression are employed to represent the equivalent plastic behavior of such materials. This self-consistent scheme is implemented numerically with an implicit updated and a prediction–correction decomposition. Numerical simulations are carried out, and the factors of friction coefficient, confining pressure and initial flaw size are analyzed. ► The wing crack growth rate considering interaction for larger flaw is increasing before failure. ► Compressive strength for mixed-mode fracture is greater than that of mode I fracture. ► The initiation of the wing cracks requires the same strain for different parameter k. ► The stresses for non-interaction/interaction cases almost overlap under high confining pressure.
doi_str_mv 10.1016/j.ijrmms.2012.09.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671404605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1365160912002092</els_id><sourcerecordid>1365116046</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-33de7bb2c3df566748b29ea17933f82af1d4f6bb06fff507b877142671e1e2a03</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhhtRcF39Bx5yEbx0b-Wjk-mLsCx-LCx40XOoTiprZruTMekR_PdmmMGjXpIi9bxV5H277i2HgQPXN_sh7su61kEAFwNMA4B51l3xnZG9GtX4vNVSjz3XML3sXtW6BwAttLnqym1iMW1U0G0xPTLXiqd-JfcDU3SVzVjJszV7WljIhdGCdcuH0xkd87jiI13aObCSm3iJT-0J28yIS2XH5Kkwl9dDoVpjTq-7F6E16M3lvu6-f_r47e5L__D18_3d7UOPSoxbL6UnM8_CSR9GrY3azWIi5GaSMuwEBu5V0PMMOoQwgpl3xnDVPsWJk0CQ193789xDyT-PVDe7xupoWTBRPlbLG6pAaRj_jzb3eHNP6YaqM-pKrrVQsIcSVyy_LQd7SsPu7TkNe0rDwmRbGk327rIBq8MlFEwu1r9aoScxcqka9-HMUXPmV6Riq4uUHPlYyG3W5_jvRX8A6hyjZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365116046</pqid></control><display><type>article</type><title>An interacting crack-mechanics based model for elastoplastic damage model of rock-like materials under compression</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yuan, X.P. ; Liu, H.Y. ; Wang, Z.Q.</creator><creatorcontrib>Yuan, X.P. ; Liu, H.Y. ; Wang, Z.Q.</creatorcontrib><description>A micro-mechanical elastoplastic damage model for rock-like materials under compressive loading is proposed based on the growth of pre-existing flaws. Interaction among the cracks is included through the self-consistent approach. The evolution of damage is quantified by the spatial flaw density and the density of the quasi-static spherical region, enclosing the flaw and its wings. The flaw density is defined by the absolute volume strain in the two-parameter Weibull statistical model. Mixed-mode fracture model is adopted to calculate the wing crack length by the strain energy density (SED) criterion. Drucker–Prager yield criterion and Voyiadjis' strain hardening function under compression are employed to represent the equivalent plastic behavior of such materials. This self-consistent scheme is implemented numerically with an implicit updated and a prediction–correction decomposition. Numerical simulations are carried out, and the factors of friction coefficient, confining pressure and initial flaw size are analyzed. ► The wing crack growth rate considering interaction for larger flaw is increasing before failure. ► Compressive strength for mixed-mode fracture is greater than that of mode I fracture. ► The initiation of the wing cracks requires the same strain for different parameter k. ► The stresses for non-interaction/interaction cases almost overlap under high confining pressure.</description><identifier>ISSN: 1365-1609</identifier><identifier>EISSN: 1873-4545</identifier><identifier>DOI: 10.1016/j.ijrmms.2012.09.007</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Computation methods. Tables. Charts ; Crack-interaction ; Criteria ; Damage ; Defects ; Density ; Elastoplasticity ; Exact sciences and technology ; Fracture mechanics ; Friction ; Geotechnics ; Mathematical models ; Plasticity ; Quasi-static crack growth ; Self-consistent ; Soil investigations. Testing ; Structural analysis. Stresses</subject><ispartof>International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2013-02, Vol.58, p.92-102</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-33de7bb2c3df566748b29ea17933f82af1d4f6bb06fff507b877142671e1e2a03</citedby><cites>FETCH-LOGICAL-a425t-33de7bb2c3df566748b29ea17933f82af1d4f6bb06fff507b877142671e1e2a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrmms.2012.09.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26925134$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, X.P.</creatorcontrib><creatorcontrib>Liu, H.Y.</creatorcontrib><creatorcontrib>Wang, Z.Q.</creatorcontrib><title>An interacting crack-mechanics based model for elastoplastic damage model of rock-like materials under compression</title><title>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</title><description>A micro-mechanical elastoplastic damage model for rock-like materials under compressive loading is proposed based on the growth of pre-existing flaws. Interaction among the cracks is included through the self-consistent approach. The evolution of damage is quantified by the spatial flaw density and the density of the quasi-static spherical region, enclosing the flaw and its wings. The flaw density is defined by the absolute volume strain in the two-parameter Weibull statistical model. Mixed-mode fracture model is adopted to calculate the wing crack length by the strain energy density (SED) criterion. Drucker–Prager yield criterion and Voyiadjis' strain hardening function under compression are employed to represent the equivalent plastic behavior of such materials. This self-consistent scheme is implemented numerically with an implicit updated and a prediction–correction decomposition. Numerical simulations are carried out, and the factors of friction coefficient, confining pressure and initial flaw size are analyzed. ► The wing crack growth rate considering interaction for larger flaw is increasing before failure. ► Compressive strength for mixed-mode fracture is greater than that of mode I fracture. ► The initiation of the wing cracks requires the same strain for different parameter k. ► The stresses for non-interaction/interaction cases almost overlap under high confining pressure.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Crack-interaction</subject><subject>Criteria</subject><subject>Damage</subject><subject>Defects</subject><subject>Density</subject><subject>Elastoplasticity</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics</subject><subject>Friction</subject><subject>Geotechnics</subject><subject>Mathematical models</subject><subject>Plasticity</subject><subject>Quasi-static crack growth</subject><subject>Self-consistent</subject><subject>Soil investigations. Testing</subject><subject>Structural analysis. Stresses</subject><issn>1365-1609</issn><issn>1873-4545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQhhtRcF39Bx5yEbx0b-Wjk-mLsCx-LCx40XOoTiprZruTMekR_PdmmMGjXpIi9bxV5H277i2HgQPXN_sh7su61kEAFwNMA4B51l3xnZG9GtX4vNVSjz3XML3sXtW6BwAttLnqym1iMW1U0G0xPTLXiqd-JfcDU3SVzVjJszV7WljIhdGCdcuH0xkd87jiI13aObCSm3iJT-0J28yIS2XH5Kkwl9dDoVpjTq-7F6E16M3lvu6-f_r47e5L__D18_3d7UOPSoxbL6UnM8_CSR9GrY3azWIi5GaSMuwEBu5V0PMMOoQwgpl3xnDVPsWJk0CQ193789xDyT-PVDe7xupoWTBRPlbLG6pAaRj_jzb3eHNP6YaqM-pKrrVQsIcSVyy_LQd7SsPu7TkNe0rDwmRbGk327rIBq8MlFEwu1r9aoScxcqka9-HMUXPmV6Riq4uUHPlYyG3W5_jvRX8A6hyjZg</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Yuan, X.P.</creator><creator>Liu, H.Y.</creator><creator>Wang, Z.Q.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130201</creationdate><title>An interacting crack-mechanics based model for elastoplastic damage model of rock-like materials under compression</title><author>Yuan, X.P. ; Liu, H.Y. ; Wang, Z.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-33de7bb2c3df566748b29ea17933f82af1d4f6bb06fff507b877142671e1e2a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Crack-interaction</topic><topic>Criteria</topic><topic>Damage</topic><topic>Defects</topic><topic>Density</topic><topic>Elastoplasticity</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics</topic><topic>Friction</topic><topic>Geotechnics</topic><topic>Mathematical models</topic><topic>Plasticity</topic><topic>Quasi-static crack growth</topic><topic>Self-consistent</topic><topic>Soil investigations. Testing</topic><topic>Structural analysis. Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, X.P.</creatorcontrib><creatorcontrib>Liu, H.Y.</creatorcontrib><creatorcontrib>Wang, Z.Q.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, X.P.</au><au>Liu, H.Y.</au><au>Wang, Z.Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interacting crack-mechanics based model for elastoplastic damage model of rock-like materials under compression</atitle><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>58</volume><spage>92</spage><epage>102</epage><pages>92-102</pages><issn>1365-1609</issn><eissn>1873-4545</eissn><abstract>A micro-mechanical elastoplastic damage model for rock-like materials under compressive loading is proposed based on the growth of pre-existing flaws. Interaction among the cracks is included through the self-consistent approach. The evolution of damage is quantified by the spatial flaw density and the density of the quasi-static spherical region, enclosing the flaw and its wings. The flaw density is defined by the absolute volume strain in the two-parameter Weibull statistical model. Mixed-mode fracture model is adopted to calculate the wing crack length by the strain energy density (SED) criterion. Drucker–Prager yield criterion and Voyiadjis' strain hardening function under compression are employed to represent the equivalent plastic behavior of such materials. This self-consistent scheme is implemented numerically with an implicit updated and a prediction–correction decomposition. Numerical simulations are carried out, and the factors of friction coefficient, confining pressure and initial flaw size are analyzed. ► The wing crack growth rate considering interaction for larger flaw is increasing before failure. ► Compressive strength for mixed-mode fracture is greater than that of mode I fracture. ► The initiation of the wing cracks requires the same strain for different parameter k. ► The stresses for non-interaction/interaction cases almost overlap under high confining pressure.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmms.2012.09.007</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1365-1609
ispartof International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2013-02, Vol.58, p.92-102
issn 1365-1609
1873-4545
language eng
recordid cdi_proquest_miscellaneous_1671404605
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Buildings. Public works
Computation methods. Tables. Charts
Crack-interaction
Criteria
Damage
Defects
Density
Elastoplasticity
Exact sciences and technology
Fracture mechanics
Friction
Geotechnics
Mathematical models
Plasticity
Quasi-static crack growth
Self-consistent
Soil investigations. Testing
Structural analysis. Stresses
title An interacting crack-mechanics based model for elastoplastic damage model of rock-like materials under compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interacting%20crack-mechanics%20based%20model%20for%20elastoplastic%20damage%20model%20of%20rock-like%20materials%20under%20compression&rft.jtitle=International%20journal%20of%20rock%20mechanics%20and%20mining%20sciences%20(Oxford,%20England%20:%201997)&rft.au=Yuan,%20X.P.&rft.date=2013-02-01&rft.volume=58&rft.spage=92&rft.epage=102&rft.pages=92-102&rft.issn=1365-1609&rft.eissn=1873-4545&rft_id=info:doi/10.1016/j.ijrmms.2012.09.007&rft_dat=%3Cproquest_cross%3E1365116046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365116046&rft_id=info:pmid/&rft_els_id=S1365160912002092&rfr_iscdi=true