An interacting crack-mechanics based model for elastoplastic damage model of rock-like materials under compression
A micro-mechanical elastoplastic damage model for rock-like materials under compressive loading is proposed based on the growth of pre-existing flaws. Interaction among the cracks is included through the self-consistent approach. The evolution of damage is quantified by the spatial flaw density and...
Gespeichert in:
Veröffentlicht in: | International journal of rock mechanics and mining sciences (Oxford, England : 1997) England : 1997), 2013-02, Vol.58, p.92-102 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102 |
---|---|
container_issue | |
container_start_page | 92 |
container_title | International journal of rock mechanics and mining sciences (Oxford, England : 1997) |
container_volume | 58 |
creator | Yuan, X.P. Liu, H.Y. Wang, Z.Q. |
description | A micro-mechanical elastoplastic damage model for rock-like materials under compressive loading is proposed based on the growth of pre-existing flaws. Interaction among the cracks is included through the self-consistent approach. The evolution of damage is quantified by the spatial flaw density and the density of the quasi-static spherical region, enclosing the flaw and its wings. The flaw density is defined by the absolute volume strain in the two-parameter Weibull statistical model. Mixed-mode fracture model is adopted to calculate the wing crack length by the strain energy density (SED) criterion. Drucker–Prager yield criterion and Voyiadjis' strain hardening function under compression are employed to represent the equivalent plastic behavior of such materials. This self-consistent scheme is implemented numerically with an implicit updated and a prediction–correction decomposition. Numerical simulations are carried out, and the factors of friction coefficient, confining pressure and initial flaw size are analyzed.
► The wing crack growth rate considering interaction for larger flaw is increasing before failure. ► Compressive strength for mixed-mode fracture is greater than that of mode I fracture. ► The initiation of the wing cracks requires the same strain for different parameter k. ► The stresses for non-interaction/interaction cases almost overlap under high confining pressure. |
doi_str_mv | 10.1016/j.ijrmms.2012.09.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671404605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1365160912002092</els_id><sourcerecordid>1365116046</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-33de7bb2c3df566748b29ea17933f82af1d4f6bb06fff507b877142671e1e2a03</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhhtRcF39Bx5yEbx0b-Wjk-mLsCx-LCx40XOoTiprZruTMekR_PdmmMGjXpIi9bxV5H277i2HgQPXN_sh7su61kEAFwNMA4B51l3xnZG9GtX4vNVSjz3XML3sXtW6BwAttLnqym1iMW1U0G0xPTLXiqd-JfcDU3SVzVjJszV7WljIhdGCdcuH0xkd87jiI13aObCSm3iJT-0J28yIS2XH5Kkwl9dDoVpjTq-7F6E16M3lvu6-f_r47e5L__D18_3d7UOPSoxbL6UnM8_CSR9GrY3azWIi5GaSMuwEBu5V0PMMOoQwgpl3xnDVPsWJk0CQ193789xDyT-PVDe7xupoWTBRPlbLG6pAaRj_jzb3eHNP6YaqM-pKrrVQsIcSVyy_LQd7SsPu7TkNe0rDwmRbGk327rIBq8MlFEwu1r9aoScxcqka9-HMUXPmV6Riq4uUHPlYyG3W5_jvRX8A6hyjZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365116046</pqid></control><display><type>article</type><title>An interacting crack-mechanics based model for elastoplastic damage model of rock-like materials under compression</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yuan, X.P. ; Liu, H.Y. ; Wang, Z.Q.</creator><creatorcontrib>Yuan, X.P. ; Liu, H.Y. ; Wang, Z.Q.</creatorcontrib><description>A micro-mechanical elastoplastic damage model for rock-like materials under compressive loading is proposed based on the growth of pre-existing flaws. Interaction among the cracks is included through the self-consistent approach. The evolution of damage is quantified by the spatial flaw density and the density of the quasi-static spherical region, enclosing the flaw and its wings. The flaw density is defined by the absolute volume strain in the two-parameter Weibull statistical model. Mixed-mode fracture model is adopted to calculate the wing crack length by the strain energy density (SED) criterion. Drucker–Prager yield criterion and Voyiadjis' strain hardening function under compression are employed to represent the equivalent plastic behavior of such materials. This self-consistent scheme is implemented numerically with an implicit updated and a prediction–correction decomposition. Numerical simulations are carried out, and the factors of friction coefficient, confining pressure and initial flaw size are analyzed.
► The wing crack growth rate considering interaction for larger flaw is increasing before failure. ► Compressive strength for mixed-mode fracture is greater than that of mode I fracture. ► The initiation of the wing cracks requires the same strain for different parameter k. ► The stresses for non-interaction/interaction cases almost overlap under high confining pressure.</description><identifier>ISSN: 1365-1609</identifier><identifier>EISSN: 1873-4545</identifier><identifier>DOI: 10.1016/j.ijrmms.2012.09.007</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Computation methods. Tables. Charts ; Crack-interaction ; Criteria ; Damage ; Defects ; Density ; Elastoplasticity ; Exact sciences and technology ; Fracture mechanics ; Friction ; Geotechnics ; Mathematical models ; Plasticity ; Quasi-static crack growth ; Self-consistent ; Soil investigations. Testing ; Structural analysis. Stresses</subject><ispartof>International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2013-02, Vol.58, p.92-102</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-33de7bb2c3df566748b29ea17933f82af1d4f6bb06fff507b877142671e1e2a03</citedby><cites>FETCH-LOGICAL-a425t-33de7bb2c3df566748b29ea17933f82af1d4f6bb06fff507b877142671e1e2a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrmms.2012.09.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26925134$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, X.P.</creatorcontrib><creatorcontrib>Liu, H.Y.</creatorcontrib><creatorcontrib>Wang, Z.Q.</creatorcontrib><title>An interacting crack-mechanics based model for elastoplastic damage model of rock-like materials under compression</title><title>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</title><description>A micro-mechanical elastoplastic damage model for rock-like materials under compressive loading is proposed based on the growth of pre-existing flaws. Interaction among the cracks is included through the self-consistent approach. The evolution of damage is quantified by the spatial flaw density and the density of the quasi-static spherical region, enclosing the flaw and its wings. The flaw density is defined by the absolute volume strain in the two-parameter Weibull statistical model. Mixed-mode fracture model is adopted to calculate the wing crack length by the strain energy density (SED) criterion. Drucker–Prager yield criterion and Voyiadjis' strain hardening function under compression are employed to represent the equivalent plastic behavior of such materials. This self-consistent scheme is implemented numerically with an implicit updated and a prediction–correction decomposition. Numerical simulations are carried out, and the factors of friction coefficient, confining pressure and initial flaw size are analyzed.
► The wing crack growth rate considering interaction for larger flaw is increasing before failure. ► Compressive strength for mixed-mode fracture is greater than that of mode I fracture. ► The initiation of the wing cracks requires the same strain for different parameter k. ► The stresses for non-interaction/interaction cases almost overlap under high confining pressure.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Crack-interaction</subject><subject>Criteria</subject><subject>Damage</subject><subject>Defects</subject><subject>Density</subject><subject>Elastoplasticity</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics</subject><subject>Friction</subject><subject>Geotechnics</subject><subject>Mathematical models</subject><subject>Plasticity</subject><subject>Quasi-static crack growth</subject><subject>Self-consistent</subject><subject>Soil investigations. Testing</subject><subject>Structural analysis. Stresses</subject><issn>1365-1609</issn><issn>1873-4545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQhhtRcF39Bx5yEbx0b-Wjk-mLsCx-LCx40XOoTiprZruTMekR_PdmmMGjXpIi9bxV5H277i2HgQPXN_sh7su61kEAFwNMA4B51l3xnZG9GtX4vNVSjz3XML3sXtW6BwAttLnqym1iMW1U0G0xPTLXiqd-JfcDU3SVzVjJszV7WljIhdGCdcuH0xkd87jiI13aObCSm3iJT-0J28yIS2XH5Kkwl9dDoVpjTq-7F6E16M3lvu6-f_r47e5L__D18_3d7UOPSoxbL6UnM8_CSR9GrY3azWIi5GaSMuwEBu5V0PMMOoQwgpl3xnDVPsWJk0CQ193789xDyT-PVDe7xupoWTBRPlbLG6pAaRj_jzb3eHNP6YaqM-pKrrVQsIcSVyy_LQd7SsPu7TkNe0rDwmRbGk327rIBq8MlFEwu1r9aoScxcqka9-HMUXPmV6Riq4uUHPlYyG3W5_jvRX8A6hyjZg</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Yuan, X.P.</creator><creator>Liu, H.Y.</creator><creator>Wang, Z.Q.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130201</creationdate><title>An interacting crack-mechanics based model for elastoplastic damage model of rock-like materials under compression</title><author>Yuan, X.P. ; Liu, H.Y. ; Wang, Z.Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-33de7bb2c3df566748b29ea17933f82af1d4f6bb06fff507b877142671e1e2a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Crack-interaction</topic><topic>Criteria</topic><topic>Damage</topic><topic>Defects</topic><topic>Density</topic><topic>Elastoplasticity</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics</topic><topic>Friction</topic><topic>Geotechnics</topic><topic>Mathematical models</topic><topic>Plasticity</topic><topic>Quasi-static crack growth</topic><topic>Self-consistent</topic><topic>Soil investigations. Testing</topic><topic>Structural analysis. Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, X.P.</creatorcontrib><creatorcontrib>Liu, H.Y.</creatorcontrib><creatorcontrib>Wang, Z.Q.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, X.P.</au><au>Liu, H.Y.</au><au>Wang, Z.Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interacting crack-mechanics based model for elastoplastic damage model of rock-like materials under compression</atitle><jtitle>International journal of rock mechanics and mining sciences (Oxford, England : 1997)</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>58</volume><spage>92</spage><epage>102</epage><pages>92-102</pages><issn>1365-1609</issn><eissn>1873-4545</eissn><abstract>A micro-mechanical elastoplastic damage model for rock-like materials under compressive loading is proposed based on the growth of pre-existing flaws. Interaction among the cracks is included through the self-consistent approach. The evolution of damage is quantified by the spatial flaw density and the density of the quasi-static spherical region, enclosing the flaw and its wings. The flaw density is defined by the absolute volume strain in the two-parameter Weibull statistical model. Mixed-mode fracture model is adopted to calculate the wing crack length by the strain energy density (SED) criterion. Drucker–Prager yield criterion and Voyiadjis' strain hardening function under compression are employed to represent the equivalent plastic behavior of such materials. This self-consistent scheme is implemented numerically with an implicit updated and a prediction–correction decomposition. Numerical simulations are carried out, and the factors of friction coefficient, confining pressure and initial flaw size are analyzed.
► The wing crack growth rate considering interaction for larger flaw is increasing before failure. ► Compressive strength for mixed-mode fracture is greater than that of mode I fracture. ► The initiation of the wing cracks requires the same strain for different parameter k. ► The stresses for non-interaction/interaction cases almost overlap under high confining pressure.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmms.2012.09.007</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-1609 |
ispartof | International journal of rock mechanics and mining sciences (Oxford, England : 1997), 2013-02, Vol.58, p.92-102 |
issn | 1365-1609 1873-4545 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671404605 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Buildings. Public works Computation methods. Tables. Charts Crack-interaction Criteria Damage Defects Density Elastoplasticity Exact sciences and technology Fracture mechanics Friction Geotechnics Mathematical models Plasticity Quasi-static crack growth Self-consistent Soil investigations. Testing Structural analysis. Stresses |
title | An interacting crack-mechanics based model for elastoplastic damage model of rock-like materials under compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A27%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interacting%20crack-mechanics%20based%20model%20for%20elastoplastic%20damage%20model%20of%20rock-like%20materials%20under%20compression&rft.jtitle=International%20journal%20of%20rock%20mechanics%20and%20mining%20sciences%20(Oxford,%20England%20:%201997)&rft.au=Yuan,%20X.P.&rft.date=2013-02-01&rft.volume=58&rft.spage=92&rft.epage=102&rft.pages=92-102&rft.issn=1365-1609&rft.eissn=1873-4545&rft_id=info:doi/10.1016/j.ijrmms.2012.09.007&rft_dat=%3Cproquest_cross%3E1365116046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365116046&rft_id=info:pmid/&rft_els_id=S1365160912002092&rfr_iscdi=true |