Convex Sets in Lexicographic Products of Graphs
Geodesic convex sets, Steiner convex sets, and J -convex (alias induced path convex) sets of lexicographic products of graphs are characterized. The geodesic case in particular rectifies Theorem 3.1 in Canoy and Garces (Graphs Combin 18(4):787–793, 2002 ).
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2012, Vol.28 (1), p.77-84 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | 1 |
container_start_page | 77 |
container_title | Graphs and combinatorics |
container_volume | 28 |
creator | Anand, Bijo S. Changat, Manoj Klavžar, Sandi Peterin, Iztok |
description | Geodesic convex sets, Steiner convex sets, and
J
-convex (alias induced path convex) sets of lexicographic products of graphs are characterized. The geodesic case in particular rectifies Theorem 3.1 in Canoy and Garces (Graphs Combin 18(4):787–793,
2002
). |
doi_str_mv | 10.1007/s00373-011-1031-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671404285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671404285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-9704216dcbd091c44228f0b5f6281f6ae2e2aa68b1255e896efd61744083edd03</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNviycvamWyS3RylaBUKCuo5pNmkbmk3NdmV-u_NsoIgeBqY972ZxyPkEuEGAcpZBCjKIgfEHKHAnB2RCbKC51wiOyYTkElJqjwlZzFuAIAjgwmZzX37aQ_Zi-1i1rTZ0h4a49dB798bkz0HX_cmKd5li2EXz8mJ09toL37mlLzd373OH_Ll0-JxfrvMTcGqLpclMIqiNqs6fTaMUVo5WHEnaIVOaEst1VpUK6Sc20oK62qBJWNQFbauoZiS6_HuPviP3sZO7Zpo7HarW-v7qFCUKT-jFU_o1R904_vQpnRKIkjOJGMJwhEywccYrFP70Ox0-FIIamhQjQ2q1JEaGlSDh46emNh2bcPv4f9N33pocIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>910954944</pqid></control><display><type>article</type><title>Convex Sets in Lexicographic Products of Graphs</title><source>SpringerLink_现刊</source><creator>Anand, Bijo S. ; Changat, Manoj ; Klavžar, Sandi ; Peterin, Iztok</creator><creatorcontrib>Anand, Bijo S. ; Changat, Manoj ; Klavžar, Sandi ; Peterin, Iztok</creatorcontrib><description>Geodesic convex sets, Steiner convex sets, and
J
-convex (alias induced path convex) sets of lexicographic products of graphs are characterized. The geodesic case in particular rectifies Theorem 3.1 in Canoy and Garces (Graphs Combin 18(4):787–793,
2002
).</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-011-1031-4</identifier><language>eng</language><publisher>Japan: Springer Japan</publisher><subject>Combinatorial analysis ; Combinatorics ; Engineering Design ; Geodetics ; Graphs ; Mathematics ; Mathematics and Statistics ; Original Paper ; Theorems</subject><ispartof>Graphs and combinatorics, 2012, Vol.28 (1), p.77-84</ispartof><rights>Springer 2011</rights><rights>Springer 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-9704216dcbd091c44228f0b5f6281f6ae2e2aa68b1255e896efd61744083edd03</citedby><cites>FETCH-LOGICAL-c348t-9704216dcbd091c44228f0b5f6281f6ae2e2aa68b1255e896efd61744083edd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00373-011-1031-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00373-011-1031-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Anand, Bijo S.</creatorcontrib><creatorcontrib>Changat, Manoj</creatorcontrib><creatorcontrib>Klavžar, Sandi</creatorcontrib><creatorcontrib>Peterin, Iztok</creatorcontrib><title>Convex Sets in Lexicographic Products of Graphs</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>Geodesic convex sets, Steiner convex sets, and
J
-convex (alias induced path convex) sets of lexicographic products of graphs are characterized. The geodesic case in particular rectifies Theorem 3.1 in Canoy and Garces (Graphs Combin 18(4):787–793,
2002
).</description><subject>Combinatorial analysis</subject><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Geodetics</subject><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Theorems</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wNviycvamWyS3RylaBUKCuo5pNmkbmk3NdmV-u_NsoIgeBqY972ZxyPkEuEGAcpZBCjKIgfEHKHAnB2RCbKC51wiOyYTkElJqjwlZzFuAIAjgwmZzX37aQ_Zi-1i1rTZ0h4a49dB798bkz0HX_cmKd5li2EXz8mJ09toL37mlLzd373OH_Ll0-JxfrvMTcGqLpclMIqiNqs6fTaMUVo5WHEnaIVOaEst1VpUK6Sc20oK62qBJWNQFbauoZiS6_HuPviP3sZO7Zpo7HarW-v7qFCUKT-jFU_o1R904_vQpnRKIkjOJGMJwhEywccYrFP70Ox0-FIIamhQjQ2q1JEaGlSDh46emNh2bcPv4f9N33pocIw</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Anand, Bijo S.</creator><creator>Changat, Manoj</creator><creator>Klavžar, Sandi</creator><creator>Peterin, Iztok</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2012</creationdate><title>Convex Sets in Lexicographic Products of Graphs</title><author>Anand, Bijo S. ; Changat, Manoj ; Klavžar, Sandi ; Peterin, Iztok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-9704216dcbd091c44228f0b5f6281f6ae2e2aa68b1255e896efd61744083edd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Combinatorial analysis</topic><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Geodetics</topic><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anand, Bijo S.</creatorcontrib><creatorcontrib>Changat, Manoj</creatorcontrib><creatorcontrib>Klavžar, Sandi</creatorcontrib><creatorcontrib>Peterin, Iztok</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anand, Bijo S.</au><au>Changat, Manoj</au><au>Klavžar, Sandi</au><au>Peterin, Iztok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convex Sets in Lexicographic Products of Graphs</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2012</date><risdate>2012</risdate><volume>28</volume><issue>1</issue><spage>77</spage><epage>84</epage><pages>77-84</pages><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>Geodesic convex sets, Steiner convex sets, and
J
-convex (alias induced path convex) sets of lexicographic products of graphs are characterized. The geodesic case in particular rectifies Theorem 3.1 in Canoy and Garces (Graphs Combin 18(4):787–793,
2002
).</abstract><cop>Japan</cop><pub>Springer Japan</pub><doi>10.1007/s00373-011-1031-4</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0911-0119 |
ispartof | Graphs and combinatorics, 2012, Vol.28 (1), p.77-84 |
issn | 0911-0119 1435-5914 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671404285 |
source | SpringerLink_现刊 |
subjects | Combinatorial analysis Combinatorics Engineering Design Geodetics Graphs Mathematics Mathematics and Statistics Original Paper Theorems |
title | Convex Sets in Lexicographic Products of Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convex%20Sets%20in%20Lexicographic%20Products%20of%20Graphs&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Anand,%20Bijo%20S.&rft.date=2012&rft.volume=28&rft.issue=1&rft.spage=77&rft.epage=84&rft.pages=77-84&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-011-1031-4&rft_dat=%3Cproquest_cross%3E1671404285%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=910954944&rft_id=info:pmid/&rfr_iscdi=true |