Nonbuoyancy density-driven convective mass and heat transfer: Scaling analysis and solution methodology
Density change during mass or heat transfer can cause convection in the absence of buoyancy forces. Prior studies have shown that this convection can be significant in the determination of diffusion coefficients and in the casting of polymeric membranes. Including this effect is challenging even for...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2012-03, Vol.58 (3), p.678-689 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 689 |
---|---|
container_issue | 3 |
container_start_page | 678 |
container_title | AIChE journal |
container_volume | 58 |
creator | Krantz, William B. Lee, Hanyong Chaudhuri, Siladitya Ray Hwang, Sun-Tak |
description | Density change during mass or heat transfer can cause convection in the absence of buoyancy forces. Prior studies have shown that this convection can be significant in the determination of diffusion coefficients and in the casting of polymeric membranes. Including this effect is challenging even for advanced numerical codes. A general methodology for obtaining the mass‐average velocity for unsteady‐state, one‐dimensional, multicomponent mass and/or heat transfer circumvents the problem of numerically solving the coupled continuity equation. Scaling analysis permits assessing the importance of this convection for a generic equation‐of‐state. Numerical predictions for evaporation from a liquid layer for components having density ratios of 1:1 and 0.7:1 indicate that ignoring convection results in errors of 34% and 24% in the evaporation time and final thickness, respectively. This convection also influences the evaporation in the percutaneous application of cosmetics, medications, and insecticides, curing of paints, varnishes, and lacquers, and formation of thin films. © 2011 American Institute of Chemical Engineers AIChE J, 2012 |
doi_str_mv | 10.1002/aic.12631 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671403817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2612876751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4341-8d7fb6170f6dd3c36b847c6d1c91d18fa16faab30016e20e598e2a53a82aebe83</originalsourceid><addsrcrecordid>eNp1kE9v1DAQxS0EEsuWA98gQkKCQ1r_SWyHW7WC0qpqJVgEN2viOFuXrN16kkK-PYaUHpDqgz22f-9p5hHyitFDRik_Am8PGZeCPSErVleqrBtaPyUrSikr8wN7Tl4gXucbV5qvyO4ihnaKMwQ7F50L6Me57JK_c6GwMdw5O-a62ANiAaErrhyMxZggYO_S--KLhcGHXf6CYUa_MBiHafQxFHs3XsUuDnE3H5BnPQzoXt6fa_L144ft5lN5fnlyujk-L20lKlbqTvWtZIr2suuEFbLVlbKyY7ZhHdM9MNkDtCL3Lx2nrm6041AL0Bxc67RYk7eL702Kt5PD0ew9WjcMEFyc0DCpWEWFZiqjr_9Dr-OU8iBoGq4bkbcqQ-8WyKaImFxvbpLfQ5oNo-ZP4iYnbv4mntk394aAOZc-p2Q9Pgh4XWsq8lqTo4X76Qc3P25ojk83_5zLReFxdL8eFJB-GKmEqs23ixMj9fb7mZKfzVb8BsM9n2Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928939284</pqid></control><display><type>article</type><title>Nonbuoyancy density-driven convective mass and heat transfer: Scaling analysis and solution methodology</title><source>Wiley Online Library All Journals</source><creator>Krantz, William B. ; Lee, Hanyong ; Chaudhuri, Siladitya Ray ; Hwang, Sun-Tak</creator><creatorcontrib>Krantz, William B. ; Lee, Hanyong ; Chaudhuri, Siladitya Ray ; Hwang, Sun-Tak</creatorcontrib><description>Density change during mass or heat transfer can cause convection in the absence of buoyancy forces. Prior studies have shown that this convection can be significant in the determination of diffusion coefficients and in the casting of polymeric membranes. Including this effect is challenging even for advanced numerical codes. A general methodology for obtaining the mass‐average velocity for unsteady‐state, one‐dimensional, multicomponent mass and/or heat transfer circumvents the problem of numerically solving the coupled continuity equation. Scaling analysis permits assessing the importance of this convection for a generic equation‐of‐state. Numerical predictions for evaporation from a liquid layer for components having density ratios of 1:1 and 0.7:1 indicate that ignoring convection results in errors of 34% and 24% in the evaporation time and final thickness, respectively. This convection also influences the evaporation in the percutaneous application of cosmetics, medications, and insecticides, curing of paints, varnishes, and lacquers, and formation of thin films. © 2011 American Institute of Chemical Engineers AIChE J, 2012</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.12631</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Buoyancy ; Chemical engineering ; Chemical thermodynamics ; Chemistry ; Convection ; Density ; Diffusion ; diffusion (mass transfer ; diffusion (mass transfer, heat transfer) ; Evaporation ; Exact sciences and technology ; General and physical chemistry ; General. Theory ; Heat and mass transfer. Packings, plates ; Heat transfer ; mass transfer ; mathematical modeling ; Mathematical models ; Methodology ; Numerical analysis ; Numerical prediction ; Thin films ; transport</subject><ispartof>AIChE journal, 2012-03, Vol.58 (3), p.678-689</ispartof><rights>Copyright © 2011 American Institute of Chemical Engineers (AIChE)</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Mar 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4341-8d7fb6170f6dd3c36b847c6d1c91d18fa16faab30016e20e598e2a53a82aebe83</citedby><cites>FETCH-LOGICAL-c4341-8d7fb6170f6dd3c36b847c6d1c91d18fa16faab30016e20e598e2a53a82aebe83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.12631$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.12631$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25580333$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Krantz, William B.</creatorcontrib><creatorcontrib>Lee, Hanyong</creatorcontrib><creatorcontrib>Chaudhuri, Siladitya Ray</creatorcontrib><creatorcontrib>Hwang, Sun-Tak</creatorcontrib><title>Nonbuoyancy density-driven convective mass and heat transfer: Scaling analysis and solution methodology</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Density change during mass or heat transfer can cause convection in the absence of buoyancy forces. Prior studies have shown that this convection can be significant in the determination of diffusion coefficients and in the casting of polymeric membranes. Including this effect is challenging even for advanced numerical codes. A general methodology for obtaining the mass‐average velocity for unsteady‐state, one‐dimensional, multicomponent mass and/or heat transfer circumvents the problem of numerically solving the coupled continuity equation. Scaling analysis permits assessing the importance of this convection for a generic equation‐of‐state. Numerical predictions for evaporation from a liquid layer for components having density ratios of 1:1 and 0.7:1 indicate that ignoring convection results in errors of 34% and 24% in the evaporation time and final thickness, respectively. This convection also influences the evaporation in the percutaneous application of cosmetics, medications, and insecticides, curing of paints, varnishes, and lacquers, and formation of thin films. © 2011 American Institute of Chemical Engineers AIChE J, 2012</description><subject>Applied sciences</subject><subject>Buoyancy</subject><subject>Chemical engineering</subject><subject>Chemical thermodynamics</subject><subject>Chemistry</subject><subject>Convection</subject><subject>Density</subject><subject>Diffusion</subject><subject>diffusion (mass transfer</subject><subject>diffusion (mass transfer, heat transfer)</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>General. Theory</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Heat transfer</subject><subject>mass transfer</subject><subject>mathematical modeling</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Numerical analysis</subject><subject>Numerical prediction</subject><subject>Thin films</subject><subject>transport</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kE9v1DAQxS0EEsuWA98gQkKCQ1r_SWyHW7WC0qpqJVgEN2viOFuXrN16kkK-PYaUHpDqgz22f-9p5hHyitFDRik_Am8PGZeCPSErVleqrBtaPyUrSikr8wN7Tl4gXucbV5qvyO4ihnaKMwQ7F50L6Me57JK_c6GwMdw5O-a62ANiAaErrhyMxZggYO_S--KLhcGHXf6CYUa_MBiHafQxFHs3XsUuDnE3H5BnPQzoXt6fa_L144ft5lN5fnlyujk-L20lKlbqTvWtZIr2suuEFbLVlbKyY7ZhHdM9MNkDtCL3Lx2nrm6041AL0Bxc67RYk7eL702Kt5PD0ew9WjcMEFyc0DCpWEWFZiqjr_9Dr-OU8iBoGq4bkbcqQ-8WyKaImFxvbpLfQ5oNo-ZP4iYnbv4mntk394aAOZc-p2Q9Pgh4XWsq8lqTo4X76Qc3P25ojk83_5zLReFxdL8eFJB-GKmEqs23ixMj9fb7mZKfzVb8BsM9n2Y</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Krantz, William B.</creator><creator>Lee, Hanyong</creator><creator>Chaudhuri, Siladitya Ray</creator><creator>Hwang, Sun-Tak</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201203</creationdate><title>Nonbuoyancy density-driven convective mass and heat transfer: Scaling analysis and solution methodology</title><author>Krantz, William B. ; Lee, Hanyong ; Chaudhuri, Siladitya Ray ; Hwang, Sun-Tak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4341-8d7fb6170f6dd3c36b847c6d1c91d18fa16faab30016e20e598e2a53a82aebe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Buoyancy</topic><topic>Chemical engineering</topic><topic>Chemical thermodynamics</topic><topic>Chemistry</topic><topic>Convection</topic><topic>Density</topic><topic>Diffusion</topic><topic>diffusion (mass transfer</topic><topic>diffusion (mass transfer, heat transfer)</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>General. Theory</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Heat transfer</topic><topic>mass transfer</topic><topic>mathematical modeling</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Numerical analysis</topic><topic>Numerical prediction</topic><topic>Thin films</topic><topic>transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krantz, William B.</creatorcontrib><creatorcontrib>Lee, Hanyong</creatorcontrib><creatorcontrib>Chaudhuri, Siladitya Ray</creatorcontrib><creatorcontrib>Hwang, Sun-Tak</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krantz, William B.</au><au>Lee, Hanyong</au><au>Chaudhuri, Siladitya Ray</au><au>Hwang, Sun-Tak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonbuoyancy density-driven convective mass and heat transfer: Scaling analysis and solution methodology</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2012-03</date><risdate>2012</risdate><volume>58</volume><issue>3</issue><spage>678</spage><epage>689</epage><pages>678-689</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Density change during mass or heat transfer can cause convection in the absence of buoyancy forces. Prior studies have shown that this convection can be significant in the determination of diffusion coefficients and in the casting of polymeric membranes. Including this effect is challenging even for advanced numerical codes. A general methodology for obtaining the mass‐average velocity for unsteady‐state, one‐dimensional, multicomponent mass and/or heat transfer circumvents the problem of numerically solving the coupled continuity equation. Scaling analysis permits assessing the importance of this convection for a generic equation‐of‐state. Numerical predictions for evaporation from a liquid layer for components having density ratios of 1:1 and 0.7:1 indicate that ignoring convection results in errors of 34% and 24% in the evaporation time and final thickness, respectively. This convection also influences the evaporation in the percutaneous application of cosmetics, medications, and insecticides, curing of paints, varnishes, and lacquers, and formation of thin films. © 2011 American Institute of Chemical Engineers AIChE J, 2012</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.12631</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2012-03, Vol.58 (3), p.678-689 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671403817 |
source | Wiley Online Library All Journals |
subjects | Applied sciences Buoyancy Chemical engineering Chemical thermodynamics Chemistry Convection Density Diffusion diffusion (mass transfer diffusion (mass transfer, heat transfer) Evaporation Exact sciences and technology General and physical chemistry General. Theory Heat and mass transfer. Packings, plates Heat transfer mass transfer mathematical modeling Mathematical models Methodology Numerical analysis Numerical prediction Thin films transport |
title | Nonbuoyancy density-driven convective mass and heat transfer: Scaling analysis and solution methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T02%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonbuoyancy%20density-driven%20convective%20mass%20and%20heat%20transfer:%20Scaling%20analysis%20and%20solution%20methodology&rft.jtitle=AIChE%20journal&rft.au=Krantz,%20William%20B.&rft.date=2012-03&rft.volume=58&rft.issue=3&rft.spage=678&rft.epage=689&rft.pages=678-689&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.12631&rft_dat=%3Cproquest_cross%3E2612876751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=928939284&rft_id=info:pmid/&rfr_iscdi=true |