A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion
A new conformal finite-difference time-domain (CFDTD) updating scheme for metallic surfaces nonaligned in the grid is presented in this paper. In contrast to existing conformal models, the new model can be formulated with the original Yee FDTD update equation. Therefore, the proposed scheme can be e...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2006-06, Vol.54 (6), p.1843-1849 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1849 |
---|---|
container_issue | 6 |
container_start_page | 1843 |
container_title | IEEE transactions on antennas and propagation |
container_volume | 54 |
creator | Benkler, S. Chavannes, N. Kuster, N. |
description | A new conformal finite-difference time-domain (CFDTD) updating scheme for metallic surfaces nonaligned in the grid is presented in this paper. In contrast to existing conformal models, the new model can be formulated with the original Yee FDTD update equation. Therefore, the proposed scheme can be easily added in standard FDTD codes even if the codes are already parallelized or hardware-accelerated. In addition, based on the commonly used conventional stability criterion, a derivation of the stability is presented and based on the conformal geometric information, a time step reduction formula is presented. The time step reduction is used as a user-defined parameter to tradeoff speed versus accuracy. The achievable geometric precision is optimized to a given time step. Therefore, even with the conventional time step (no reduction) the presented scheme profits from the conformal discretization. To show the performance and the robustness of the proposed scheme canonical validations and two real world applications were investigated. A broadband low profile (circular) antenna was successfully simulated showing the benefit of the conformal FDTD method compared to the conventional scheme. Furthermore, a CAD based mobile phone was conformally discretized and successfully simulated showing that the proposed scheme is highly suited for the simulation of advanced engineering problems. |
doi_str_mv | 10.1109/TAP.2006.875909 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671401544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1638381</ieee_id><sourcerecordid>2544146701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-4b76ee962f6283a3748cd23b12b242338b7471532f6b3a0f4853e0c698315d563</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpodttzz30IgotvXijkWRZPi67SRMIJIcN9CZkedwo2NJW8ibk31dhA4Ecchpm3jcPZh4hX4GtAFh7sltfrzhjaqWbumXtO7KAutYV5xzekwVjoKuWqz8fyaec70ortZQL4tc04AMV1Za6GIaYJjvS69MNPdvutjS7W5yQPvj5lh4ypqrHwQfs6V-ME87JO7pP6Hz2MVAbetpj8vdFz7Pt_OjnR-qSn8swhs_kw2DHjF-e65LcnJ3uNufV5dXvi836snJC87mSXaMQW8UHxbWwopHa9Vx0wDsuuRC6a2QDtSh6JywbpK4FMqdaLaDuayWW5OfRd5_ivwPm2Uw-OxxHGzAesuGaCaWK05L8ehME1YBkUEtZ0O-v0Lt4SKGcYVrgIASXUKCTI-RSzDnhYPbJTzY9GmDmKSJTIjJPEZljRGXjx7Otzc6OQ7Kh_PJlrdFSAWOF-3bkPCK-yEpooUH8By79ltk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912133241</pqid></control><display><type>article</type><title>A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion</title><source>IEEE Electronic Library (IEL)</source><creator>Benkler, S. ; Chavannes, N. ; Kuster, N.</creator><creatorcontrib>Benkler, S. ; Chavannes, N. ; Kuster, N.</creatorcontrib><description>A new conformal finite-difference time-domain (CFDTD) updating scheme for metallic surfaces nonaligned in the grid is presented in this paper. In contrast to existing conformal models, the new model can be formulated with the original Yee FDTD update equation. Therefore, the proposed scheme can be easily added in standard FDTD codes even if the codes are already parallelized or hardware-accelerated. In addition, based on the commonly used conventional stability criterion, a derivation of the stability is presented and based on the conformal geometric information, a time step reduction formula is presented. The time step reduction is used as a user-defined parameter to tradeoff speed versus accuracy. The achievable geometric precision is optimized to a given time step. Therefore, even with the conventional time step (no reduction) the presented scheme profits from the conformal discretization. To show the performance and the robustness of the proposed scheme canonical validations and two real world applications were investigated. A broadband low profile (circular) antenna was successfully simulated showing the benefit of the conformal FDTD method compared to the conventional scheme. Furthermore, a CAD based mobile phone was conformally discretized and successfully simulated showing that the proposed scheme is highly suited for the simulation of advanced engineering problems.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2006.875909</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Antennas ; Applied sciences ; Broadband antennas ; Code standards ; Computational modeling ; Conformal finite-difference time-domain (CFDTD) method ; Criteria ; Delta modulation ; Equations ; Equipments and installations ; Exact sciences and technology ; Finite difference methods ; Finite difference time domain method ; finite-difference time-domain (FDTD) method ; Mathematical analysis ; Mathematical models ; Mobile handsets ; Mobile radiocommunication systems ; Radiocommunications ; Reduction ; Robustness ; Services and terminals of telecommunications ; Simulation ; Stability ; Stability criteria ; Studies ; subcell ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Telephone. Videophone ; Time domain analysis</subject><ispartof>IEEE transactions on antennas and propagation, 2006-06, Vol.54 (6), p.1843-1849</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-4b76ee962f6283a3748cd23b12b242338b7471532f6b3a0f4853e0c698315d563</citedby><cites>FETCH-LOGICAL-c382t-4b76ee962f6283a3748cd23b12b242338b7471532f6b3a0f4853e0c698315d563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1638381$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1638381$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17846100$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Benkler, S.</creatorcontrib><creatorcontrib>Chavannes, N.</creatorcontrib><creatorcontrib>Kuster, N.</creatorcontrib><title>A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>A new conformal finite-difference time-domain (CFDTD) updating scheme for metallic surfaces nonaligned in the grid is presented in this paper. In contrast to existing conformal models, the new model can be formulated with the original Yee FDTD update equation. Therefore, the proposed scheme can be easily added in standard FDTD codes even if the codes are already parallelized or hardware-accelerated. In addition, based on the commonly used conventional stability criterion, a derivation of the stability is presented and based on the conformal geometric information, a time step reduction formula is presented. The time step reduction is used as a user-defined parameter to tradeoff speed versus accuracy. The achievable geometric precision is optimized to a given time step. Therefore, even with the conventional time step (no reduction) the presented scheme profits from the conformal discretization. To show the performance and the robustness of the proposed scheme canonical validations and two real world applications were investigated. A broadband low profile (circular) antenna was successfully simulated showing the benefit of the conformal FDTD method compared to the conventional scheme. Furthermore, a CAD based mobile phone was conformally discretized and successfully simulated showing that the proposed scheme is highly suited for the simulation of advanced engineering problems.</description><subject>Antennas</subject><subject>Applied sciences</subject><subject>Broadband antennas</subject><subject>Code standards</subject><subject>Computational modeling</subject><subject>Conformal finite-difference time-domain (CFDTD) method</subject><subject>Criteria</subject><subject>Delta modulation</subject><subject>Equations</subject><subject>Equipments and installations</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>finite-difference time-domain (FDTD) method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mobile handsets</subject><subject>Mobile radiocommunication systems</subject><subject>Radiocommunications</subject><subject>Reduction</subject><subject>Robustness</subject><subject>Services and terminals of telecommunications</subject><subject>Simulation</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>Studies</subject><subject>subcell</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Telephone. Videophone</subject><subject>Time domain analysis</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFr3DAQhUVpodttzz30IgotvXijkWRZPi67SRMIJIcN9CZkedwo2NJW8ibk31dhA4Ecchpm3jcPZh4hX4GtAFh7sltfrzhjaqWbumXtO7KAutYV5xzekwVjoKuWqz8fyaec70ortZQL4tc04AMV1Za6GIaYJjvS69MNPdvutjS7W5yQPvj5lh4ypqrHwQfs6V-ME87JO7pP6Hz2MVAbetpj8vdFz7Pt_OjnR-qSn8swhs_kw2DHjF-e65LcnJ3uNufV5dXvi836snJC87mSXaMQW8UHxbWwopHa9Vx0wDsuuRC6a2QDtSh6JywbpK4FMqdaLaDuayWW5OfRd5_ivwPm2Uw-OxxHGzAesuGaCaWK05L8ehME1YBkUEtZ0O-v0Lt4SKGcYVrgIASXUKCTI-RSzDnhYPbJTzY9GmDmKSJTIjJPEZljRGXjx7Otzc6OQ7Kh_PJlrdFSAWOF-3bkPCK-yEpooUH8By79ltk</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Benkler, S.</creator><creator>Chavannes, N.</creator><creator>Kuster, N.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060601</creationdate><title>A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion</title><author>Benkler, S. ; Chavannes, N. ; Kuster, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-4b76ee962f6283a3748cd23b12b242338b7471532f6b3a0f4853e0c698315d563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Antennas</topic><topic>Applied sciences</topic><topic>Broadband antennas</topic><topic>Code standards</topic><topic>Computational modeling</topic><topic>Conformal finite-difference time-domain (CFDTD) method</topic><topic>Criteria</topic><topic>Delta modulation</topic><topic>Equations</topic><topic>Equipments and installations</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>finite-difference time-domain (FDTD) method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mobile handsets</topic><topic>Mobile radiocommunication systems</topic><topic>Radiocommunications</topic><topic>Reduction</topic><topic>Robustness</topic><topic>Services and terminals of telecommunications</topic><topic>Simulation</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>Studies</topic><topic>subcell</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Telephone. Videophone</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benkler, S.</creatorcontrib><creatorcontrib>Chavannes, N.</creatorcontrib><creatorcontrib>Kuster, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benkler, S.</au><au>Chavannes, N.</au><au>Kuster, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2006-06-01</date><risdate>2006</risdate><volume>54</volume><issue>6</issue><spage>1843</spage><epage>1849</epage><pages>1843-1849</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>A new conformal finite-difference time-domain (CFDTD) updating scheme for metallic surfaces nonaligned in the grid is presented in this paper. In contrast to existing conformal models, the new model can be formulated with the original Yee FDTD update equation. Therefore, the proposed scheme can be easily added in standard FDTD codes even if the codes are already parallelized or hardware-accelerated. In addition, based on the commonly used conventional stability criterion, a derivation of the stability is presented and based on the conformal geometric information, a time step reduction formula is presented. The time step reduction is used as a user-defined parameter to tradeoff speed versus accuracy. The achievable geometric precision is optimized to a given time step. Therefore, even with the conventional time step (no reduction) the presented scheme profits from the conformal discretization. To show the performance and the robustness of the proposed scheme canonical validations and two real world applications were investigated. A broadband low profile (circular) antenna was successfully simulated showing the benefit of the conformal FDTD method compared to the conventional scheme. Furthermore, a CAD based mobile phone was conformally discretized and successfully simulated showing that the proposed scheme is highly suited for the simulation of advanced engineering problems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2006.875909</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-926X |
ispartof | IEEE transactions on antennas and propagation, 2006-06, Vol.54 (6), p.1843-1849 |
issn | 0018-926X 1558-2221 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671401544 |
source | IEEE Electronic Library (IEL) |
subjects | Antennas Applied sciences Broadband antennas Code standards Computational modeling Conformal finite-difference time-domain (CFDTD) method Criteria Delta modulation Equations Equipments and installations Exact sciences and technology Finite difference methods Finite difference time domain method finite-difference time-domain (FDTD) method Mathematical analysis Mathematical models Mobile handsets Mobile radiocommunication systems Radiocommunications Reduction Robustness Services and terminals of telecommunications Simulation Stability Stability criteria Studies subcell Systems, networks and services of telecommunications Telecommunications Telecommunications and information theory Telephone. Videophone Time domain analysis |
title | A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T10%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%203-D%20conformal%20PEC%20FDTD%20scheme%20with%20user-defined%20geometric%20precision%20and%20derived%20stability%20criterion&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Benkler,%20S.&rft.date=2006-06-01&rft.volume=54&rft.issue=6&rft.spage=1843&rft.epage=1849&rft.pages=1843-1849&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2006.875909&rft_dat=%3Cproquest_RIE%3E2544146701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912133241&rft_id=info:pmid/&rft_ieee_id=1638381&rfr_iscdi=true |