A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion

A new conformal finite-difference time-domain (CFDTD) updating scheme for metallic surfaces nonaligned in the grid is presented in this paper. In contrast to existing conformal models, the new model can be formulated with the original Yee FDTD update equation. Therefore, the proposed scheme can be e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on antennas and propagation 2006-06, Vol.54 (6), p.1843-1849
Hauptverfasser: Benkler, S., Chavannes, N., Kuster, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1849
container_issue 6
container_start_page 1843
container_title IEEE transactions on antennas and propagation
container_volume 54
creator Benkler, S.
Chavannes, N.
Kuster, N.
description A new conformal finite-difference time-domain (CFDTD) updating scheme for metallic surfaces nonaligned in the grid is presented in this paper. In contrast to existing conformal models, the new model can be formulated with the original Yee FDTD update equation. Therefore, the proposed scheme can be easily added in standard FDTD codes even if the codes are already parallelized or hardware-accelerated. In addition, based on the commonly used conventional stability criterion, a derivation of the stability is presented and based on the conformal geometric information, a time step reduction formula is presented. The time step reduction is used as a user-defined parameter to tradeoff speed versus accuracy. The achievable geometric precision is optimized to a given time step. Therefore, even with the conventional time step (no reduction) the presented scheme profits from the conformal discretization. To show the performance and the robustness of the proposed scheme canonical validations and two real world applications were investigated. A broadband low profile (circular) antenna was successfully simulated showing the benefit of the conformal FDTD method compared to the conventional scheme. Furthermore, a CAD based mobile phone was conformally discretized and successfully simulated showing that the proposed scheme is highly suited for the simulation of advanced engineering problems.
doi_str_mv 10.1109/TAP.2006.875909
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671401544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1638381</ieee_id><sourcerecordid>2544146701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-4b76ee962f6283a3748cd23b12b242338b7471532f6b3a0f4853e0c698315d563</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVpodttzz30IgotvXijkWRZPi67SRMIJIcN9CZkedwo2NJW8ibk31dhA4Ecchpm3jcPZh4hX4GtAFh7sltfrzhjaqWbumXtO7KAutYV5xzekwVjoKuWqz8fyaec70ortZQL4tc04AMV1Za6GIaYJjvS69MNPdvutjS7W5yQPvj5lh4ypqrHwQfs6V-ME87JO7pP6Hz2MVAbetpj8vdFz7Pt_OjnR-qSn8swhs_kw2DHjF-e65LcnJ3uNufV5dXvi836snJC87mSXaMQW8UHxbWwopHa9Vx0wDsuuRC6a2QDtSh6JywbpK4FMqdaLaDuayWW5OfRd5_ivwPm2Uw-OxxHGzAesuGaCaWK05L8ehME1YBkUEtZ0O-v0Lt4SKGcYVrgIASXUKCTI-RSzDnhYPbJTzY9GmDmKSJTIjJPEZljRGXjx7Otzc6OQ7Kh_PJlrdFSAWOF-3bkPCK-yEpooUH8By79ltk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912133241</pqid></control><display><type>article</type><title>A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion</title><source>IEEE Electronic Library (IEL)</source><creator>Benkler, S. ; Chavannes, N. ; Kuster, N.</creator><creatorcontrib>Benkler, S. ; Chavannes, N. ; Kuster, N.</creatorcontrib><description>A new conformal finite-difference time-domain (CFDTD) updating scheme for metallic surfaces nonaligned in the grid is presented in this paper. In contrast to existing conformal models, the new model can be formulated with the original Yee FDTD update equation. Therefore, the proposed scheme can be easily added in standard FDTD codes even if the codes are already parallelized or hardware-accelerated. In addition, based on the commonly used conventional stability criterion, a derivation of the stability is presented and based on the conformal geometric information, a time step reduction formula is presented. The time step reduction is used as a user-defined parameter to tradeoff speed versus accuracy. The achievable geometric precision is optimized to a given time step. Therefore, even with the conventional time step (no reduction) the presented scheme profits from the conformal discretization. To show the performance and the robustness of the proposed scheme canonical validations and two real world applications were investigated. A broadband low profile (circular) antenna was successfully simulated showing the benefit of the conformal FDTD method compared to the conventional scheme. Furthermore, a CAD based mobile phone was conformally discretized and successfully simulated showing that the proposed scheme is highly suited for the simulation of advanced engineering problems.</description><identifier>ISSN: 0018-926X</identifier><identifier>EISSN: 1558-2221</identifier><identifier>DOI: 10.1109/TAP.2006.875909</identifier><identifier>CODEN: IETPAK</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Antennas ; Applied sciences ; Broadband antennas ; Code standards ; Computational modeling ; Conformal finite-difference time-domain (CFDTD) method ; Criteria ; Delta modulation ; Equations ; Equipments and installations ; Exact sciences and technology ; Finite difference methods ; Finite difference time domain method ; finite-difference time-domain (FDTD) method ; Mathematical analysis ; Mathematical models ; Mobile handsets ; Mobile radiocommunication systems ; Radiocommunications ; Reduction ; Robustness ; Services and terminals of telecommunications ; Simulation ; Stability ; Stability criteria ; Studies ; subcell ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Telephone. Videophone ; Time domain analysis</subject><ispartof>IEEE transactions on antennas and propagation, 2006-06, Vol.54 (6), p.1843-1849</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-4b76ee962f6283a3748cd23b12b242338b7471532f6b3a0f4853e0c698315d563</citedby><cites>FETCH-LOGICAL-c382t-4b76ee962f6283a3748cd23b12b242338b7471532f6b3a0f4853e0c698315d563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1638381$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1638381$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17846100$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Benkler, S.</creatorcontrib><creatorcontrib>Chavannes, N.</creatorcontrib><creatorcontrib>Kuster, N.</creatorcontrib><title>A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion</title><title>IEEE transactions on antennas and propagation</title><addtitle>TAP</addtitle><description>A new conformal finite-difference time-domain (CFDTD) updating scheme for metallic surfaces nonaligned in the grid is presented in this paper. In contrast to existing conformal models, the new model can be formulated with the original Yee FDTD update equation. Therefore, the proposed scheme can be easily added in standard FDTD codes even if the codes are already parallelized or hardware-accelerated. In addition, based on the commonly used conventional stability criterion, a derivation of the stability is presented and based on the conformal geometric information, a time step reduction formula is presented. The time step reduction is used as a user-defined parameter to tradeoff speed versus accuracy. The achievable geometric precision is optimized to a given time step. Therefore, even with the conventional time step (no reduction) the presented scheme profits from the conformal discretization. To show the performance and the robustness of the proposed scheme canonical validations and two real world applications were investigated. A broadband low profile (circular) antenna was successfully simulated showing the benefit of the conformal FDTD method compared to the conventional scheme. Furthermore, a CAD based mobile phone was conformally discretized and successfully simulated showing that the proposed scheme is highly suited for the simulation of advanced engineering problems.</description><subject>Antennas</subject><subject>Applied sciences</subject><subject>Broadband antennas</subject><subject>Code standards</subject><subject>Computational modeling</subject><subject>Conformal finite-difference time-domain (CFDTD) method</subject><subject>Criteria</subject><subject>Delta modulation</subject><subject>Equations</subject><subject>Equipments and installations</subject><subject>Exact sciences and technology</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>finite-difference time-domain (FDTD) method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mobile handsets</subject><subject>Mobile radiocommunication systems</subject><subject>Radiocommunications</subject><subject>Reduction</subject><subject>Robustness</subject><subject>Services and terminals of telecommunications</subject><subject>Simulation</subject><subject>Stability</subject><subject>Stability criteria</subject><subject>Studies</subject><subject>subcell</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Telephone. Videophone</subject><subject>Time domain analysis</subject><issn>0018-926X</issn><issn>1558-2221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kUFr3DAQhUVpodttzz30IgotvXijkWRZPi67SRMIJIcN9CZkedwo2NJW8ibk31dhA4Ecchpm3jcPZh4hX4GtAFh7sltfrzhjaqWbumXtO7KAutYV5xzekwVjoKuWqz8fyaec70ortZQL4tc04AMV1Za6GIaYJjvS69MNPdvutjS7W5yQPvj5lh4ypqrHwQfs6V-ME87JO7pP6Hz2MVAbetpj8vdFz7Pt_OjnR-qSn8swhs_kw2DHjF-e65LcnJ3uNufV5dXvi836snJC87mSXaMQW8UHxbWwopHa9Vx0wDsuuRC6a2QDtSh6JywbpK4FMqdaLaDuayWW5OfRd5_ivwPm2Uw-OxxHGzAesuGaCaWK05L8ehME1YBkUEtZ0O-v0Lt4SKGcYVrgIASXUKCTI-RSzDnhYPbJTzY9GmDmKSJTIjJPEZljRGXjx7Otzc6OQ7Kh_PJlrdFSAWOF-3bkPCK-yEpooUH8By79ltk</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Benkler, S.</creator><creator>Chavannes, N.</creator><creator>Kuster, N.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20060601</creationdate><title>A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion</title><author>Benkler, S. ; Chavannes, N. ; Kuster, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-4b76ee962f6283a3748cd23b12b242338b7471532f6b3a0f4853e0c698315d563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Antennas</topic><topic>Applied sciences</topic><topic>Broadband antennas</topic><topic>Code standards</topic><topic>Computational modeling</topic><topic>Conformal finite-difference time-domain (CFDTD) method</topic><topic>Criteria</topic><topic>Delta modulation</topic><topic>Equations</topic><topic>Equipments and installations</topic><topic>Exact sciences and technology</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>finite-difference time-domain (FDTD) method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mobile handsets</topic><topic>Mobile radiocommunication systems</topic><topic>Radiocommunications</topic><topic>Reduction</topic><topic>Robustness</topic><topic>Services and terminals of telecommunications</topic><topic>Simulation</topic><topic>Stability</topic><topic>Stability criteria</topic><topic>Studies</topic><topic>subcell</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Telephone. Videophone</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benkler, S.</creatorcontrib><creatorcontrib>Chavannes, N.</creatorcontrib><creatorcontrib>Kuster, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on antennas and propagation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benkler, S.</au><au>Chavannes, N.</au><au>Kuster, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion</atitle><jtitle>IEEE transactions on antennas and propagation</jtitle><stitle>TAP</stitle><date>2006-06-01</date><risdate>2006</risdate><volume>54</volume><issue>6</issue><spage>1843</spage><epage>1849</epage><pages>1843-1849</pages><issn>0018-926X</issn><eissn>1558-2221</eissn><coden>IETPAK</coden><abstract>A new conformal finite-difference time-domain (CFDTD) updating scheme for metallic surfaces nonaligned in the grid is presented in this paper. In contrast to existing conformal models, the new model can be formulated with the original Yee FDTD update equation. Therefore, the proposed scheme can be easily added in standard FDTD codes even if the codes are already parallelized or hardware-accelerated. In addition, based on the commonly used conventional stability criterion, a derivation of the stability is presented and based on the conformal geometric information, a time step reduction formula is presented. The time step reduction is used as a user-defined parameter to tradeoff speed versus accuracy. The achievable geometric precision is optimized to a given time step. Therefore, even with the conventional time step (no reduction) the presented scheme profits from the conformal discretization. To show the performance and the robustness of the proposed scheme canonical validations and two real world applications were investigated. A broadband low profile (circular) antenna was successfully simulated showing the benefit of the conformal FDTD method compared to the conventional scheme. Furthermore, a CAD based mobile phone was conformally discretized and successfully simulated showing that the proposed scheme is highly suited for the simulation of advanced engineering problems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TAP.2006.875909</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-926X
ispartof IEEE transactions on antennas and propagation, 2006-06, Vol.54 (6), p.1843-1849
issn 0018-926X
1558-2221
language eng
recordid cdi_proquest_miscellaneous_1671401544
source IEEE Electronic Library (IEL)
subjects Antennas
Applied sciences
Broadband antennas
Code standards
Computational modeling
Conformal finite-difference time-domain (CFDTD) method
Criteria
Delta modulation
Equations
Equipments and installations
Exact sciences and technology
Finite difference methods
Finite difference time domain method
finite-difference time-domain (FDTD) method
Mathematical analysis
Mathematical models
Mobile handsets
Mobile radiocommunication systems
Radiocommunications
Reduction
Robustness
Services and terminals of telecommunications
Simulation
Stability
Stability criteria
Studies
subcell
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Telephone. Videophone
Time domain analysis
title A new 3-D conformal PEC FDTD scheme with user-defined geometric precision and derived stability criterion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T10%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%203-D%20conformal%20PEC%20FDTD%20scheme%20with%20user-defined%20geometric%20precision%20and%20derived%20stability%20criterion&rft.jtitle=IEEE%20transactions%20on%20antennas%20and%20propagation&rft.au=Benkler,%20S.&rft.date=2006-06-01&rft.volume=54&rft.issue=6&rft.spage=1843&rft.epage=1849&rft.pages=1843-1849&rft.issn=0018-926X&rft.eissn=1558-2221&rft.coden=IETPAK&rft_id=info:doi/10.1109/TAP.2006.875909&rft_dat=%3Cproquest_RIE%3E2544146701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912133241&rft_id=info:pmid/&rft_ieee_id=1638381&rfr_iscdi=true